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Abstract. Safe is a first-order eager functional language with facilities
for programmer-controlled destruction and copying of data structures
and is intended for compile-time analysis of memory consumption. In
Safe, heap and stack memory consumption during the evaluation of an
expression f(e1, . . . , en) depends on the number of calls to f . Ensuring
termination of Safe programs (or of particular function calls) is therefore
essential to implement these analysis. Furthermore, being able to give
bounds to the number of recursive calls required by a terminating initial
call becomes essential in computing space bounds. In this paper, we first
investigate how to analyze termination of Safe programs by using stan-
dard term rewriting techniques. First, we transform a Safe program into
a term rewriting system. We provide a correct and complete transforma-
tion for that purpose, i.e., termination of the original Safe program P is
completely characterized as (innermost) termination of the transformed
TRS RP . Then, termination can be automatically analysed by means of
existing tools such as AProVE, mu-term, or TTT. We provide explicit
bounds for the number of calls which are issued during the evaluation of
an expression as above. We also investigate how to use proofs of termi-
nation which combine the dependency pairs approach with polynomial
interpretations to obtain such numeric bounds.

Keywords: Termination, Term Rewriting Systems, Space complexity.

1 Introduction

Safe [23, 18] is a first-order eager functional language with facilities for program-
mer controlled destruction and copying of data structures, intended for compile
time analysis of memory consumption. In Safe there is no garbage collector and
the heap is split instead into disjoint regions. The allocation and deallocation of
these compiler-defined regions is associated with function application. A func-
tion may charge space costs both to its own working region and to regions in
scope passed as arguments. So, heap memory consumption depends critically on
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the number of recursive calls deployed by a single external call to a function. In
order to compute space bounds for the heap it is essential to compute a bound
to this number, expressed as a function of the argument sizes.

In this paper we investigate how to prove termination of Safe programs and
how to give appropriate bounds to the number of recursive calls as a first step to
compute space bounds. Both termination and complexity bounds of programs
have been investigated in the abstract framework of Term Rewriting Systems
[3, 21]. A suitable way to prove termination of programs written in declarative
programming languages like Haskell or Maude is translating them into (variants
of) term rewriting systems and then using techniques and tools for proving
termination of rewriting. See [10, 11] for recent proposals of concrete procedures
and tools which apply to the aforementioned programming languages. Our first
contribution is a transformation for proving termination of Safe programs P by
translating them into Term Rewriting Systems (TRS).

Polynomial interpretations have been extensively investigated as suitable
tools to address different issues in term rewriting [3]. For instance, the limits
of polynomial interpretations regarding their ability to prove termination were
first investigated in [13] by considering the derivational complexity of polyno-
mially terminating TRSs, i.e., the upper bound of the lengths of arbitrary (but
finite) derivations issued from a given term (of size n) in a terminating TRS.

Complexity analysis of first order functional programs (or TRSs) has also
been successfully addressed by using polynomial interpretations [4–6]. The aim
of these papers is to classify TRSs in different (time or space) complexity classes
according to the (least) kind of polynomial interpretation which is (weakly) com-
patible with the TRS. Recent approaches [5] combine the use of path orderings
[9] to ensure both termination together with suitable polynomial interpretations
for giving bounds to the length of the rewrite sequences (which are known finite
due to the termination proof). In proofs of termination using the dependency
pair approach [1], we can make a more flexible use of polynomials to avoid the
use of path orderings to ensure termination. With the same polynomial inter-
pretation we can both prove termination and, as we show in this paper, obtain
suitable complexity bounds. We investigate explicit bounds to the number of
calls which are issued during the evaluation of an expression with respect to
a Safe program P. We show that they can be obtained by directly using the
polynomial interpretations which are obtained in proofs of termination for the
transformed TRS RP which combine the dependency pairs approach with poly-
nomial interpretations to obtain such numeric bounds.

2 Preliminaries

A binary relation R on a set A is terminating (or well-founded) if there is no infi-
nite sequence a1 R a2 R a3 · · ·. Throughout the paper, X denotes a countable set
of variables and F denotes a signature, i.e., a set of function symbols {f, g, . . .},
each having a fixed arity given by a mapping ar : F → N. The set of terms built
from F and X is T (F ,X ). A context is a term C[ ] with a ‘hole’ (formally, a
fresh constant symbol). A rewrite rule is an ordered pair (l, r), written l → r,
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with l, r ∈ T (F ,X ), l 6∈ X and Var(r) ⊆ Var(l). A TRS is a pair R = (F , R)
where R is a set of rewrite rules. Given a TRS R, a term t ∈ T (F ,X ) rewrites
to s written t →R s, if t = C[σ(l)] and s = C[σ(r)] for some context C[ ], sub-
stitution σ, and rule l → r in R. In the previous rewrite step, the term σ(l) is
called the contracted redex of t. A term t ∈ T (F ,X ) innermost rewrites to s,
written t

i→R s if the redex contracted in the step t → s contains no redex. A
TRS R is (innermost) terminating if →R (resp. i→R) is terminating.

A conditional, oriented TRS (CTRS), has rules of the form l → r ⇐ C,
where C = s1 → t1, . . . , sk → tk is called an oriented condition. Given a CTRS
R, we let Ru be the set of rules Ru = {l → r | l → r ⇐ C ∈ R}. A CTRS
which satisfies Var(r) ⊆ Var(l) ∪ Var(C) for every conditional rule is called a
3-CTRS. It is deterministic if the variables of the right-hand side ti of every
condition si → ti of C are introduced before they are used in the left-hand side
sj of a subsequent condition sj → tj . A deterministic 3-CTRS R is syntactically
deterministic if, for every rule l → r ⇐ s1 → t1, . . . , sk → tk in R every term ti
is a constructor term or a ground normal form with respect to Ru.

3 The Safe language

Safe was introduced as a research platform to investigate analyses related to
sharing of data structures and to memory consumption. Currently it is equipped
with a type system guaranteeing that, in spite of the memory destruction facili-
ties of the language, all well-typed programs will be free of dangling pointers at
runtime. More information can be found at [23, 18] and [19].

There are two versions of Safe: full-Safe, in which programmers write their
programs, and Core-Safe (the internal version of full-Safe), in which program
analyses are defined. Full-Safe syntax is close to Haskell’s. Safe admits basic
types, algebraic datatypes (introduced by the usual data declarations), and
function definitions by means of conditional equations with the usual facilitites
for pattern matching, let and case expressions, and where clauses. Additionally,
the programmer can specify a destructive pattern matching operation by using
the symbol ! after the pattern. The intended meaning is the destruction of the
cell associated with the constructor, thus allowing its reuse. A Safe program
consists of a sequence of (possibly recursive) function definitions together with
a main expression. For the moment, mutual recursion is not allowed.

The merge-sort program of Figure 1 uses a constant heap space to implement
the sorting of the list. This is a consequence of the destructive constant-space
versions splitD and mergeD of the funtions which respectively split a list into two
pieces and merge two sorted lists. The types shown in the program are inferred
by the compiler. A symbol ! in a type signature indicates that the corresponding
data structure is destroyed by the function. A symbol ! in a righthand side
variable expresses that a potentially condemned variable is reused. Variables ρ
are polymorphic and indicate the region where the data structure ‘lives’.
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splitD :: ∀aρ1ρ2ρ3.Int→ [a]!@ρ1 → ρ1 → ρ2 → ρ3 → ([a]@ρ2, [a]@ρ1)@ρ3

splitD 0 xs! = ([ ], xs!)
splitD n [ ]! = ([ ], [ ])
splitD n (x : xs)! = (x : xs1, xs2)

where (xs1, xs2)! = splitD (n− 1) xs

mergeD :: ∀a, ρ.[a]!@ρ→ [a]!@ρ→ ρ→ [a]@ρ
mergeD [ ]! ys! = ys!
mergeD xs! [ ]! = xs!
mergeD (x : xs)! (y : ys)!
| x ≤ y = x : mergeD xs (y : ys!)
| otherwise = y : mergeD (x : xs!) ys

msortD :: ∀a, ρ.[a]!@ρ→ ρ→ [a]@ρ
msortD xs
| n ≤ 1 = xs!
| otherwise = mergeD (msortD xs1) (msortD xs2)
where (xs1, xs2) = splitD (n ‘div ‘ 2) xs

n = length xs

Fig. 1. Mergesort program in full-Safe, using constant heap space

prog → dec1; . . . ; decn; e

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| x@r {copy}
| x! {reuse}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e
be → C ai

n @ r {constructor application}
| e

Fig. 2. Core-Safe language definition

3.1 Core-Safe syntax

The Safe compiler first performs a region inference which determines which re-
gion has to be used for each construction. A function may build constructions in
several regions: a working region, addressed by using the reserved identifier self,
and a possibly empty collection of output regions which are passed as arguments.
For this reason, the Core-Safe syntax requires additional region arguments both
in function calls and in expressions such as (C xi

n)@r, which denotes a con-
struction, and x@r, which denotes the copy of the structure with root labeled
x into region r. The compiler also flattens the expressions in such a way that
applications of functions are made only to constants or to variables. Also, where
clauses are translated into let expressions, and boolean conditions in the guards
are translated into case expressions.

The syntax of Core-Safe is shown in Figure 2. We use the notation xi
n to

abbreviate the sequence x1 . . . xn.
Note that constructions can only occur on binding expressions (be) inside let

expressions. The normal form of an expression is either a basic constant c, or
a variable pointing to a construction. We assume the existence of a heap and
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splitD n xs @ r1 r2 r3 = case n of
0 -> let nil1 = []@r2 in let res1 = (nil1,xs!)@r3 in res1
_ -> case! xs of

[] -> let nil1 = []@r2 in let nil2 = []@r1 in
let res2 = (nil1,nil2)@r3 in res2

: x xx -> let z = let n’ = n-1 in splitD n’ xx @ r1 r2 r3 in
let xs1 = case z of (ys1,ys2) -> ys1 in
let xs2 = case! z of (zs1,zs2) -> zs2 in
let xs1’ = (: x xs1)@r2 in
let res3 = (xs1’, xs2)@r3 in res3

Fig. 3. Core-Safe version of splitD

of a runtime environment, respectively mapping pointers to constructions and
program variables to heap pointers. The complete operational semantics can be
found in [23].

Function splitD defined in the Safe program of Figure 1 is translated into
Core-Safe definition shown in Figure 3.

4 Transformation from Core-Safe to CTRS

In this section we describe a transformation from Core-Safe programs to con-
ditional term rewriting systems (CTRS). We can even simplify the Core-Safe
syntax, because destructive patterns and regions are not relevant for termina-
tion purposes. In this way, variable, copy, and reuse expressions are collapsed
into the variable expression, and the two variants of case are collapsed into one.

We assume that each case expression in a function definition has been la-
belled with a unique integer k. The transformation will be defined by using the
following auxiliary functions:

1. trP takes a sequence of Core-Safe function definitions and returns a CTRS.
Notice that the main expression is excluded.

2. trF takes a function definition and returns a set of conditional rewrite rules.
3. trR given an expression e (a binding expression be), the set V of its free

variables, and a condition C = s1 → t1, . . . , sk → tk consisting of atomic
(rewrite) conditions si → ti, returns the right-hand side of a rule together
with its conditional part, and an additional, possibly empty, set of condi-
tional rewrite rules. The condition C is treated as a list. If C = [ ], then the
generated right-hand side has no conditional part.

4. trL which, given an expression e and the set V of its free variables, yields
the left part of a condition, and a sequence of atomic conditions to its left.

Let us assume that var(V ) assigns the variables in V to a given term t in a
fixed ordering. The complete transformation is given in Figure 4. Our running
example would be transformed into the following CTRS:

splitD(n,xs) -> case1(n,n,xs)
case1(0,n,xs) -> res1 <= Nil -> nil1, Tup(nil1,xs) -> res1
case1(S(x),n,xs) -> case2(xs,n)
case2(Nil,n) -> res2 <= Nil -> nil1, Nil -> nil2, Tup(nil1,nil2) -> res2
case2(Cons(x,xx),n) -> res3 <= pred(n) -> n’, splitD(n’,xx) -> z,

case3(z) -> xs1, case4(z) -> xs2,
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trP(def i

n
)

def
=

Sn
i=1 trF (def i)

trF (f xi
n = e)

def
= f(x1, . . . , xn)→ trR(e, fv(e), [ ])

trR(c, V, C)
def
= c⇐ C

trR(x, V, C)
def
= x⇐ C

trR(Cr ai
n, V, C)

def
= Cr(a1, . . . , an)⇐ C

trR(f ai
n, V, C)

def
= f(a1, . . . , an)⇐ C

trR(k : case x of Ci xij
ni → ei

n
, V, C)

def
=

{casek(x, var(V ))⇐ C} ∪
{casek(Ci(xi1, . . . , xini), var(V ))→ trR(ei, fv(ei), [ ]) | i ∈ {1..n}}

trR(let x1 = e1 in e2, V, C)
def
= trR(e2, fv(e2), C ++ [, trL(e1, fv(e1))→ x1])

trL(e, V )
def
= trR(e, V, [ ]) if e ∈ {c, x, Cr ai

n, f ai
n, case}

trL(let x1 = e1 in e2, V )
def
= [trL(e1, fv(e1))→ x1, ] ++ trL(e2, fv(e2))

Fig. 4. Transformation from Core-Safe to CTRS

Cons(x,xs1) -> xs1’, Tup(xs1’,xs2) -> res3
case3(Tup(ys1,ys2)) -> ys1
case4(Tup(zs1,zs2)) -> zs2

Proposition 1. Every Core-Safe program P is transformed into an oriented,
left-linear, non-overlapping, syntactically deterministic 3-CTRS trP(P) which
is, therefore, confluent.

Now we apply standard transformations from deterministic 3-CTRS to plain
TRSs [21, Def.7.2.48]. If R is a 3-CTRS, let us call U(R) to the resulting TRS.
For instance, in our running example U(R) would be the following TRS:

splitD(n,xs) -> case1(n,n,xs)
case1(0,n,xs) -> Tup(Nil,xs)
case1(S(x),n,xs) -> case2(xs,n)
case2(Nil,n) -> Tup(Nil,Nil)
case2(Cons(x,xx),n) -> U1(pred(n),x,xx)
U1(n’,x,xx) -> U2(splitD(n’,xx),x)
U2(z,x) -> U3(case3(z),x,z)
U3(xs1,x,z) -> U4(case4(z),x,xs1)
U4(xs2,x,xs1) -> Tup(Cons(x,xs1),xs2)
case3(Tup(ys1,ys2)) -> ys1
case4(Tup(zs1,zs2)) -> zs2

In the following, let RP denote the system U(trP(P)) resulting from applying
the two aforementioned transformations to the Core-Safe program P.

Proposition 2. For every Core-Safe program P, the TRS RP consists of non-
overlapping rules. Moreover,

1. All the left-hand sides are of the form f(p1, . . . , pn) where (1) all pi are
variables if f is a function symbol defined in P or (2) they are flat patterns
otherwise.

2. The right-hand sides are of the form g(e1, . . . , em) with g being a function
symbol, all ei, 1 < i ≤ m are variables and e1 is either a variable, a flat
pattern, or a term f(a1, . . . , an) with f being a function symbol and the aj
variables or basic constants.

Proof. Straightforward by Proposition 1 and the U transformation. �
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5 Termination of Safe programs

The following result shows that the transformation introduced in the previous
section preserves both termination and nontermination (i.e., characterizes ter-
mination) of Safe programs.

Proposition 3. Given a Core-Safe program P and its transformed 3-CTRS
R = trP(P) the main expression e of P terminates according to Safe semantics
if and only if the term te associated with e terminates in R. Furthermore, in
every term (except the last one, if it exists) of the reduction sequence of te there
is only one innermost redex.

It is well-known that the transformation U which has been used to obtain a
TRS U(R) from a deterministic 3-CTRS R is also nontermination preserving
(see [21, Proposition 7.2.50]). Furthermore, for nonoverlapping, syntactically de-
terministic 3-CTRSs, termination of R and innermost termination of U(R) are
equivalent [21, Corollary 7.2.62]. According to Proposition 1, trP(P) is a non-
overlapping, syntactically deterministic 3-CTRS for every Core-Safe program P.
Thus, by combining these facts, we can say the following.

Theorem 1. A Core-Safe program P, excluding its main expression, is termi-
nating if and only if the TRS U(trP(P)) is innermost terminating.

Nowadays, several termination tools are able to prove (or disprove) innermost
termination of rewriting automatically (e.g., AProVE, mu-term, TTT, etc.).
Thanks to Theorem 1, they can be used now to prove termination (or nonter-
mination!) of Core-Safe programs by using the transformation trP .

6 Dependency graph and recursive calls

Termination of (innermost) rewriting can be proved by using the dependency
pairs approach [1]. Furthermore, our analysis of complexity bounds in Section
8 uses concepts coming from the dependency pairs approach. Thus, we briefly
introduce and exemplify it in the following.

Given a TRS R = (C]D, R) we consider F as the disjoint union F = C]D of
symbols c ∈ C, called constructors and symbols f ∈ D, called defined functions,
where D = {root(l) | l→ r ∈ R} and C = F −D. The set DP(R) of dependency
pairs for R is given as follows: if f(t1, . . . , tm)→ r ∈ R and r = C[g(s1, . . . , sn)]
for some defined symbol g ∈ D, and context C[·], and s1, . . . , sn ∈ T (F ,X ), then
f ](t1, . . . , tm)→ g](s1, . . . , sn) ∈ DP(R), where f ] and g] are new fresh symbols
associated with f and g respectively.

Example 1. The dependency pairs which correspond to the TRS RSplitD ob-
tained at the end of Section 4 are the following (as usual, we capitalize –or
duplicate– the first letter of a function name f to indicate its associated symbol
f ].):
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Fig. 5. Dependency graph for the transformed RSplitD

[1] SPLITD(n,xs) -> CASE1(n,n,xs)
[2] CASE1(S(x),n,xs) -> CASE2(xs,n)
[3] CASE2(Cons(x,xx),n) -> UU1(pred(n),x,xx)
[4] CASE2(Cons(x,xx),n) -> PRED(n)
[5] UU1(n’,x,xx) -> UU2(splitD(n’,xx),x)
[6] UU1(n’,x,xx) -> SPLITD(n’,xx)
[7] UU2(z,x) -> UU3(case3(z),x,z)
[8] UU2(z,x) -> CASE3(z)
[9] UU3(xs1,x,z) -> UU4(case4(z),x,xs1)
[10] UU3(xs1,x,z) -> CASE4(z)

Termination of (innermost) rewriting is investigated by inspecting the cycles
of the dependency graph DG(R) associated1 with the TRS R. The nodes of the
dependency graph are the dependency pairs u → v in DP(R); there is an arc
from a node u→ v to another node u′ → v′ ∈ DP(R) if there are substitutions θ
and θ′ such that θ(v)→∗R θ′(u′). In general, the dependency graph of a TRS is
not computable and we need to use some approximation of it (e.g., the estimated
dependency graph, see [1]). Figure 5 shows the estimated dependency graph for
RSplitD. Note that there is only one cycle: C = {1, 2, 3, 6}.

6.1 Dependency graph for RP

Due to the special structure of the rules in RP (see Proposition 2), it is clear
that, given a defined symbol f in the original SAFE program P:

1. There is at most one rule u→ v ∈ DP(RP) such that root(u) = f ]. Further-
more, u = f ](x1, . . . , xn), where x1, . . . , xn are variables.

2. If u → v ∈ DP(RP) and v contains an occurrence of f or f ], then either
v = f ](v1, . . . , vn) or v = g](f(v11, . . . , v1n), v2, . . . , vm) for some defined
symbol g.

Thus, for every recursive call issued from f(δ1, . . . , δn), where δ1, . . . , δn ∈
T (C,X ) there is a minimal cycle in the dependency graph of R which contains
a left-hand side f(x1, . . . , xn) thus closing a (minimal) cycle in the estimated

1 Proofs of termination of innermost rewriting using dependency pairs actually use an
innermost dependency graph which is a subset of the standard one. In our context,
though, both of them are identical due to the special shape of the rules in RP .
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dependency graph. Here, by a minimal cycle we mean a cycle which does not
contain any proper subcycle.

Proposition 4. Given a Core-Safe program P, there is a bijection between min-
imal cycles in the dependency graph of the TRS RP and recursive calls in P.

For instance, in our running example, the only existing cycle C in the dependency
graph contains the following dependency pairs:

[1] SPLITD(n,xs) -> CASE1(n,n,xs)
[2] CASE1(S(x),n,xs) -> CASE2(xs,n)
[3] CASE2(Cons(x,xx),n) -> UU1(pred(n),x,xx)
[6] UU1(n’,x,xx) -> SPLITD(n’,xx)

This cycle corresponds to the internal recursive call of splitD .
In the following, given a defined symbol f from the original SAFE program

P, we let DG(RP , f ]) be the subgraph of DG(RP) which contains all (and only)
the minimal cycles in DG(RP) starting from f ](x1, . . . , xn)→ v.

Definition 1 (Nested cycles). Given a defined symbol f from a SAFE pro-
gram P, we say that a minimal cycle C in DG(RP , f ]) contains nested calls to
other cycles if there is u→ v ∈ C such that f occurs in v (hence below the root
of v). The nesting degree nd(C, f ]) of C in DG(RP , f ]) is the number of such oc-
currences in C. The nesting degree ND(RP , f ]) of DG(RP , f ]) is the maximum
of nd(C, f ]) for the minimal cycles C in DG(RP , f ]).
For instance, the nesting degree of the cycle C in our running example is 0.
Consider now the following SAFE program FibN encoding Fibonacci’s function
using Peano’s natural numbers:

add Zero y = y
add (Suc x) y = Suc (add x y)

fibN Zero = Suc (Zero)
fibN (Suc (Zero)) = Suc (Zero)
fibN (Suc (Suc x)) = add (fibN (Suc x)) (fibN x)

and the transformed TRS RFibN
add(x1,x2) -> case1(x2,x1)
case1(Suc(x3),x1) -> flat1(add(x1,x3))
flat1(x4) -> Suc(x4)
case1(Zero,x1) -> x1
fibN(x1) -> case2(x1)
case2(Suc(x2)) -> case3(x2)
case2(Zero) -> Suc(Zero)
case3(Suc(x3)) -> flat3(fibN(Suc(x3)),x3)
flat3(x4,x3) -> flat2(fibN(x3),x4)
flat2(x5,x4) -> add(x4,x5)
case3(Zero) -> Suc(Zero)

Note that DG(RFibN , fibN) consists of two minimal cycles. Cycle C1 has the
following dependency pairs:

FIBN(x1) -> CASE2(x1) CASE3(Suc(x3)) -> FLAT3(fibN(Suc(x3)),x3)
CASE2(Suc(x2)) -> CASE3(x2) FLAT3(x4,x3) -> FIBN(x3)

Its nesting degree is 1: nd(C1, F IBN) = 1. The second minimal cycle C2 consists
of the following dependency pairs:

FIBN(x1) -> CASE2(x1) CASE3(Suc(x3)) ->FIBN(Suc(x3))
CASE2(Suc(x2)) -> CASE3(x2)

Its nesting degree is 0: nd(C2, F IBN) = 0.
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7 Explicit polynomial complexity bounds for Safe

The second main goal of this paper is developing methods for giving explicit com-
plexity bounds to time/space consumption in Safe computations. Intuitively, a
measure [[ ]] aiming at associating a given complexity value to a particular func-
tion call f(δ1, . . . , δk) for constructor terms δ1, . . . , δk has to take into account
the role of the arguments δ1, . . . , δk in the computation of such value. Roughly
speaking, we must associate a suitable k-ary mapping [[f ]] to symbol f . In this
paper we assume that [[f ]] is a polynomial with non-negative integer coefficients
for all function symbols f . In particular, [[f ]]] is the polynomial interpreting the
symbol f ] associated to the Core-Safe function symbol f . Then, Theorems 2 and
3 below show how (and when) the polynomial interpretation can be used to give
explicit bounds to the number of calls to f in a given computation. First, we
need to introduce some preliminary notions.

Roughly speaking, the usable rules U(R,C) associated to a cycle C in the
dependency graph ofR are obtained by first considering the rules f(l1, . . . , ln)→
r ∈ R for all (unmarked, defined) symbols f ∈ D occurring in the right-hand
sides v of the dependency pairs u→ v ∈ C and then recursively adding the rules
defining symbols in the right-hand sides of r [1, Definition 32]:

Definition 2 (Usable rules). Let R be a TRS. For any symbol f let Rules(R, f)
be the set of rules defining f and such that the left-hand side l has no redex as
proper subterm. For any term t the set of basic usable rules U(R, t) is as follows:

U(R, x) = ∅
U(R, f(t1, . . . , tn)) = Rules(R, f) ∪

S
1≤i≤ar(f)

U(R′, ti) ∪
S

l→r∈Rules(R,f)

U(R′, r)

where R′= R−Rules(R, f). If C ⊆ DP(R), then U(R,C) =
⋃

l→r∈C

U(R, r).

For instance, for cycle C corresponding to our running example SplitD, the set
of usable rules consists of a single rule: pred(s(n)) -> n. The following propo-
sition shows why usable rules are interesting in our setting.

Proposition 5. Let R be a TRS, s, t, u ∈ T (F ,X ), and σ be a substitution such
that s = σ(t) and ∀x ∈ Var(t), σ(x) is a normal form. Then, s i−→∗Ru if and
only if s i−→∗U(R,t)u.

More refined notions of usable rules for innermost rewriting have been recently
introduced in [12, Definition 15]. Indeed, they could be used instead of the ones
in Definition 2 because Proposition 5 also holds for them.

7.1 No nested cycles in the graph

In the following, the number of calls to f during the innermost normalization of
a term t is denoted by Nf (t).

Theorem 2 (Explicit polynomial bounds I). Let P be a SAFE program,
R = (F , R) be the transformed TRS (i.e., R = RP), and f ∈ D be defined
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in P and such that ND(RP , f ]) = 0. Let [[ ]] be a polynomial interpretation
over the naturals satisfying that, for all minimal cycles C in DG(RP , f ]): (1)
[[s]] ≥ [[t]] for all s → t ∈ U(R,C) ∪ C; and (2) [[u]] > [[v]] for at least one
u → v ∈ C. Let t = f(δ1, . . . , δn) where δ1, . . . , δn are normal forms.Then,
Nf (t) ≤ [[f ](δ1, . . . , δn)]] + 1.

Remark 1. Note that Theorem 2 provides a concrete, numeric bound to Nf (t).
This is in contrast to the related works we are aware of, which rather provide
a bound in O(P ) for some polynomial P (in the size of the terms), i.e., the
constant C which multiplies P is usually not provided.

Many times, the polynomials which are necessary in Theorem 2 for obtaining
polynomial bounds can be obtained in practice as part of the innermost termi-
nation proof for the TRS R using the dependency pairs approach which empha-
sizes the use of the dependency graph to obtain the proofs (DG-termination [1]).
For instance, consider the TRS RSplitD obtained in Section 4 for our running
example. The following polynomial intepretation:

[pred](X) = X [case2](X1,X2) = 0 [case4](X) = 0
[S](X) = X [Cons](X1,X2) = X2 + 1 [U5](X1,X2) = 0
[splitD](X1,X2) = 0 [U1](X1,X2,X3) = 0 [SPLITD](X1,X2) = X2 + 1
[case1](X1,X2,X3) = 0 [U2](X1,X2) = X1 [UU1](X1,X2,X3) = X3 + 1
[0] = 0 [U3](X1,X2,X3) = 0 [CASE2](X1,X2) = X1
[Tup](X1,X2) = 0 [case3](X) = 0 [CASE1](X1,X2,X3) = X3 + 1
[Nil] = 0 [U4](X1,X2,X3) = 0

which is obtained by mu-term [17] can be used in Theorem 2 to bound calls of
the form splitD(δ1, δ2) for constructor terms δ1, δ2.

7.2 Nested cycles in the graph

Theorem 2 can be used to give explicit bounds to the number of calls to func-
tion symbols f whose ‘local’ dependency graph DG(RP , f ]) has no nested cycles.
When nested cycles are present, we have to pay attention not only to the inter-
pretations but also to the combinatorial structure of the cycles.

Theorem 3 (Explicit polynomial bounds II). Let P be a SAFE program,
R = (F , R) be the transformed TRS (i.e., R = RP), and f ∈ D be defined
in P and such that d = ND(R, f ]) > 0. Let [[ ]] be a polynomial interpretation
over the naturals satisfying that, for all minimal cycles C in DG(R, f ]), (1)
[[s]] ≥ [[t]] for all s → t ∈ U(R,C) ∪ C; and (2) [[u]] > [[v]] for at least one
u → v ∈ C. Let t = f(δ1, . . . , δn) where δ1, . . . , δn are normal forms.Then,
Nf (t) < (d+ 1)[[f

](δ1,...,δn)]]+1.

The SAFE program FibN above shows that Theorem 3 is really necessary be-
cause Theorem 2 does not properly bound the number of calls to symbols f
with nested cycles: it is clear that a call FibN(n) for a given number n (in
Peano’s notation) leads to an exponential number of calls to f which would not
be captured by using Theorem 2.

11



7.3 Bounding the number of calls using the size of the arguments

The size |t| of a term t is the number symbols occurring in t: |t| = 1 if t is a
variable or a constant, and |f(t1, . . . , tn)| = 1 +

∑n
i=1 |ti|. If the polynomials

associated to the constructor symbols c ∈ C has the following shape:

[[c]](x1, . . . , xn) = c1x1 + · · ·+ cnxn + c0

with 0 ≤ ci ≤ 1 for all i, 0 ≤ i ≤ n, then the size |δ| of a constructor term
δ ∈ T (C,X ) is bounded from below by its interpretation: |δ| ≥ [[δ]]. Therefore,
since [[f ]]] has no negative coefficient, we have, for t = f(δ1, . . . , δn):

1 + [[f ]]](|δ1|, . . . , |δn|) ≥ 1 + [[f ]]]([[δ1]], . . . , [[δn]]) = 1 + [[f ](δ1, . . . , δn)]] ≥ Nf (t)

Thus, the arguments x1, . . . , xn of the polynomial [[f ]]](x1, . . . , xn) can be thought
of as sizes of constructor terms passed as arguments to f .

7.4 Space bounds and polynomial bounds

The relationship of the inferred polynomials with the space bounds we wish to
infer is the following:

• Each function builds constructor cells in different heap regions which the
compiler ‘knows’ because they are explicit in the Core-Safe text.
• The compiler infers an upper bound to the number of cells a single call

to the function will build in each region in scope. This in general will be
a polynomial because it may depend on calls to other functions. As these
functions have already been inferred, the compiler knows the space costs
charged by these functions to each region. For instance, in the splitD example
of Sec. 3.1, the space inferred for a single recursive call is {ρ1 7→ −1, ρ2 7→
1, ρ3 7→ 0}, while an upper bound for the non-recursive cases is {ρ1 7→
1, ρ2 7→ 1, ρ3 7→ 1}.
• Once we have the above, the function heap cost is obtained by multiplying

the (bound to the) number of recursive calls by the (bound to the) space
cost of each call, and then adding the space cost of the non-recursive cases.
In a call splitD(n, x), this gives {ρ1 7→ −x, ρ2 7→ x+ 2, ρ3 7→ 1}

In total, a positive balance of 3 cells is obtained, which confirms that splitD runs
in constant heap space.

As the cell size is fixed for a given program, the compiler can compute an
upper bound to the heap memory in terms of words or bytes as a function on
the input sizes. For stack consumption, the inference is even easier as the stack
is not split into regions.

8 Implementation of the analysis

As remarked above, the polynomials which are necessary in Theorems 2 and 3
above can be obtained in practice by using standard tools for proving termination
of innermost rewriting like AProVE2, mu-term3, or TTT4. Actually, all these
2 http://aprove.informatik.rwth-aachen.de
3 http://zenon.dsic.upv.es/muterm
4 http://colo6-c703.uibk.ac.at/ttt
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tools are able to compute the dependency graph of a TRS and can also obtain
polynomial interpretations which are compatible with the (usable) rules and
dependency pairs of the cycles in the graph.

Nevertheless, it is worth noticing that, in many cases, the polynomials ob-
tained by such tools do not fit the requirements in Theorems 2 or 3. In particular,
since the main goal of these tools is proving termination, the polynomial inter-
pretations which are obtained can be different for different cycles. Also, most
of them use argument filterings [20] which often remove parts of the rules and
dependency pairs. This makes the obtention of a termination proof easier. How-
ever, some calls to the considered function f can be lost due to the removal of
parts of the rules. Clearly, this would lead to wrong conclusions5.

Another possibility is the direct implementation of Theorems 2 or 3. Borrow-
ing the well-known procedures for solving inequalities like s ≥ t or u > v, for
terms s, t, u, v, by using (parametric) polynomial interpretations over the natu-
rals (see [7] for a recent account), we could obtain the required interpretations
which could then be safely used in the corresponding theorems. By lack of space,
we cannot develop this further.

9 Case studies

We have applied our results to the TRS’s obtained by transforming the Core-
Safe functions presented in Section 3 and some other examples such as length,
append, insert, listInsert, insSort, mkTree, inorder, which respectively
gives the length of a list, appends two lists, inserts an element in a search tree,
inserts an element in a sorted list, sorts a list by insertion, builds a search tree
from a list, and does an inorder traversal of a tree, with the obvious definitions.
By using different termination tools, we have obtained the polynomials shown in
Figure 6. Complete details about our experiments and about the Safecompiler
can be found at:

http://www.dsic.upv.es/~slucas/papers/lopstr08/experiments

http://dalila.sip.ucm.es/~ricardo

From the above results, we are glad to see that the bounds obtained are
rather accurate: the polynomial obtained for length is actually exact, and the
one obtained for splitD is very accurate. The bound for insert is also accurate as
the binary tree needs not be balanced. In the case of merge there are two minimal
cycles with nesting degree zero. The tool infers [[merge]]](x, y) = x+ y+ 1 which
makes both cycles to decrease, as required by Theorem 2. Finally, the following
Safe program has a cuadratic number of calls:

inter xs ys = inter2 xs ys ys inter2 (x:xs) (y:ys) ys2
inter2 [] ys1 ys2 = [] | x == y = x : inter2 xs ys ys2
inter2 (x:xs) [] ys = inter2 xs ys ys | x /= y = inter2 (x:xs) ys ys2

5 The 2006 standalone version of the tool AProVE (AProVE 1.2), though, offers the
possibility of disabling many of these features.
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Safe function Polynomial inferred Constructor interpretation
splitD(n, x) x+ 1 cons(y, ys) = ys + 1
mergeD(x, y) x+ y + 1 cons(n, y) = y + 1

length(x) x cons(y, ys) = ys + 1
append(x, y) x cons(y, ys) = ys + 1
insert(x, t) t+ 1 Node(t, x, t′) = t+ t′ + 1

inter2 (x, y, z) xz + 2y + 2 cons(y, ys) = 2y + ys + 2
listInsert(x, y) y cons(y, ys) = ys + 1
insSortD(x) x cons(y, ys) = ys + 1
msortD(x) No proof obtained
mkTree(x) x cons(y, ys) = ys + 1
inorder(t) t Node(t, x, t′) = t+ t′ + 1

Fig. 6. Polynomials obtained for several Core-Safe functions

which are captured by the polynomial interpretation computed by the tool:
inter2 (x, y, z) = xz + 2y + 2.

We have not obtained a termination proof for msortD. We must be prepared
for that due to the incompleteness of any termination proving algorithm. Appar-
ently, the current TRS termination proving technology is not able to detect that
the sizes of the lists passed as arguments to msortD in the two recursive calls
are strictly smaller that the list of the external call. Due to cases such as this,
we plan to include in the source language the possibility of manually annotating
the non-inferred functions with a polynomial.

10 Related and Future Work

We have already cited in the introduction the works ([4–6]) aiming to classify
TRS’s in time and space complexity classes by using polynomial interpretations.
We make note that some results by these authors concern the computation of
bounds for the size of the normal form term resulting from a rewriting sequence.
In our context, this would correspond to the size of the data structure returned
by a function. This size is in principle not related to the heap space needed to
compute the result, which is the topic of this paper. Closer to the research in
this paper is the work about derivation heights by Hofbauer and others (see [13])
However, these works try to bound the length of rewriting sequences issued for
terms in (polynomially) terminating TRSs. They pay no attention to the steps
that correspond to particular symbols as done in this paper.

In the area of functional languages, there have been some attempts to infer
complexity space bounds by using specialized type systems. The two following
works compute linear space bounds of first order functional programs:

• Hughes and Pareto [15] incorporated in Embedded-ML the concept of re-
gion and their sized-types system is able to type-check heap and stack linear
bounds from annotations given by the programmer.
• Hofmann and Jost [14] developed a type system inferring linear bounds on

heap consumption, being the underlying machinery a Linear Programming
system solving the restrictions generated during type inference.
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Related to the latter there has been the successful EU funded project Mobile
Resources Guarantees [2] which, in addition to inferring space bounds, produces
formal certificates of this property which can be verified by a proof-checker.
A follow-on project is the Netherlands funded one AHA [24], which tries to
extend the above results to space bounds beyond linear ones. Our approach
seems promising with respect to these works in that any polynomial can be
inferred by current termination proving tools.

In the logic programming field, there have been also several approaches for in-
ferring complexity costs (mainly time costs). We mention [16] and [8], both based
on abstract interpretation. The first one generates a set of linear constraints, so
it cannot infer higher-degree polynomials.

Our results giving explicit bounds on the number of recursive calls are com-
pletely general and could be directly applied to any other eager first-order func-
tional language. The experiments reported in this paper encourages us to con-
tinuing the exploration of the approach of using TRS termination tools to infer
polynomial bounds on the number of calls of real programs.
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Appendix: Proof of Theorems

Proposition 1 Every Core-SAFE program P is transformed into an oriented,
left-linear, non-overlapping, syntactically deterministic 3-CTRS trP(P) which
is, therefore, confluent.

Proof. The resulting system is an oriented CTRS just by inspection of the gen-
erated rules.

For every defined symbol f , a single rule is generated with all argument
variables xin distinct. For every case expression labelled k, a non-overlapping
set of rules caseK , one for every data constructor Ci, is generated. Each rule
introduces distinct pattern variables xijni . So, the CTRS is non-overlapping
and left-linear.

By induction on the calls to trR(e, V, C), it is easy to show that fv(e) ⊆
V ∪ var(C). From here, and by inspection of the rules l → r ⇐ C generated,
we conclude that the system is 3-CTRS. Finally, the last rule of trL satisfies
fv(e2) ⊆ V ∪{x1}. By induction on the number of simple conditions included in
C we can prove that every condition C is syntactically deterministic. �

Proposition 3 Given a Core-SAFE program P and its transformed 3-CTRS
R = trP(P) the main expression e of P terminates according to Safe semantics
if and only if the term te associated to e terminates in R. Furthermore, in every
term (except the last one, if it exists) of the reduction sequence of te there is only
one innermost redex.

Proof. It simultaneously uses the small-step semantics of SAFE (not shown in
this paper, see [22]) and the CTRS rules. It proceeds by induction on the depth
k of the definition of the function symbols in the initial term. Then, by cases on
the expressions e in function’s bodies and, when the expression e is a let or a
case, by induction on the number of operational semantics steps reducing e to
normal form. �

Proposition 4 Given a Core-SAFE program P, there is a bijection between
minimal cycles in the dependency graph of the TRS RP and recursive calls in
P.

Proof. Straightforward by inspection of the transformation and by knowing that
the arcs in the estimated dependency graph require unification between the right
part of a dependency pair and the left part of another pair. In our transformed
system, a cycle is closed when the internal call f ](t1, . . . , tn) to a recursive Core-
SAFE function f unifies with the dependency pair f ](x1, . . . , xn) → r coming
from the initial (and only) rule defining function f . �

In the following proof, we use some additional notation. Positions p, q, . . . are
represented by chains of positive natural numbers used to address subterms of
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t. The set of positions of a term t is Pos(t). Positions of non-variable symbols
in t are denoted as PosF (t), and PosX (t) are the positions of variables.
Proposition 5 Let R be a TRS, s, t, u ∈ T (F ,X ), and σ be a substitution such
that s = σ(t) and ∀x ∈ Var(t), σ(x) is a normal form. Then, s i−→∗Ru if and
only if s i−→∗U(R,t)u.

Proof. The if part is obvious. For the only if part, we proceed by induction on
the length of the sequence s i−→∗Ru. If s = σ(t) = u, it is trivial. Otherwise, if
s

i→R s′
i−→∗Ru, then there is a substitution θ, a position p ∈ Pos(s) and a

rule l → r ∈ R such that s|p = θ(l) and s′|p = θ(r). Furthermore, since σ(x) is
a normal form for all x ∈ Var(t), p is a nonvariable position of t: p ∈ PosF (t).
Hence, according to Definition 2, l→ r ∈ U(R, t) and s i→U(R,t) s

′. Furthermore,
we can write s′ = σ′(t′) for t′ = t[r]p, where σ′(x) = σ(x) for all x ∈ Var(t)
and σ′(x) = θ(x) for all x ∈ Var(r) (as usual, we assume that Var(t)∩Var(l→
r) = ∅). Furthermore, since s|p is an innermost redex, we can assume that
θ(x) is a normal form for all x ∈ Var(r). Hence, σ′(x) is a normal form for all
x ∈ Var(t′). By the induction hypothesis we know that s′ i−→∗U(R,t′)u. Since

U(R, t′) ⊆ U(R, t), we have s i−→∗U(R,t)s
′ i−→∗U(R,t)u as desired. �

Theorem 2 Let P be a SAFE program, R = (F , R) be the transformed TRS
(i.e., R = RP), and f ∈ D be defined in P and such that ND(RP , f ]) = 0.
Let [[ ]] be a polynomial interpretation over the naturals satisfying that, for all
minimal cycles C in DG(RP , f ]): (1) [[s]] ≥ [[t]] for all s→ t ∈ U(R,C) ∪ C; and
(2) [[u]] > [[v]] for at least one u → v ∈ C. Let t = f(δ1, . . . , δn) where δ1, . . . , δn
are normal forms.Then, Nf (t) ≤ [[f ](δ1, . . . , δn)]] + 1.

Proof. By induction of the number Nf (t) of calls to f in the sequence. If Nf (t) =
1, then since all polynomials contain non-negative coefficients only, we have that
[[f ](δ1, . . . , δn)]] ≥ 0; hence [[f ](δ1, . . . , δn)]] + 1 ≥ Nf (t). If Nf (t) > 1, then,
without loosing generality, considering that the evaluation of terms proceeds
according to an innermost strategy, we can write the sequence as follows:

t = f(δ1, . . . , δn) i−→+
RC[f(w′1, . . . , w

′
n)] i−→∗RC[f(δ′1, . . . , δ

′
n)] i−→+

Rδ

for some context C[ ], terms w′1, . . . , w
′
n ∈ T (F ,X ), and normal forms δ′1, . . . , δ

′
n.

Let us further develop the sequence from t to C[f(w′1, . . . , w
′
n)] as follows

t = f(δ1, . . . , δn) = t1
i→R t2

i→R · · ·
i→R tm+1 = C[f(w′1, . . . , w

′
n)]

for some m > 0. Note that the first rewriting step must be performed at the
root of the term f(δ1, . . . , δn) = t1. Here, due to the special shape of the rules
in R (see Proposition 2), we can assume that

1. the sequence performs only one rewriting step using the rule f(x1, . . . , xn)→
r defining f (namely, the first one!) and
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2. the occurrence of f in the last term of the sequence has been introduced by
the last rule.

This means that there is a cycle C consisting of a sequence of pairs f ](x1, . . . , xn)→
v1, . . . , um → f ](w1, . . . , wn) (where x1, . . . , xn are variables and w1, . . . , wn
are terms) and a substitution σ such that σ(f ](x1, . . . , xn)) = f ](δ1, . . . , δn),
σ(vj)

i−→∗Rσ(uj+1) for all j, 1 ≤ j < m, and σ(wj)
i−→∗Rδ′j for all j, 1 ≤

j ≤ n. Furthermore, σ(xj) = δj is a normal form for all variables xj , 1 ≤
j ≤ n. Hence, by using Proposition 5 together with Definition 2, we can say
that σ(vj)

i−→∗U(R,C)σ(uj+1) for all j, 1 ≤ j < m and σ(wj) = δ′j (hence

σ(wj)
i−→∗U(R,C)δ

′
j) for all j, 1 ≤ j < n. According to our compatibility as-

sumptions for the rules and dependency pairs with respect to the considered
polynomial interpretation, we have that

1. [[σ(s)]] ≥ [[σ(t)]] for all s→ t ∈ U(R,C) ∪ C and
2. [[σ(u)]] > [[σ(v)]] for at least one u→ v ∈ C.

In particular, as a consequence of item 1 above, we have [[σ(wj)]] ≥ [[δ′j+1]] for
all j, 1 ≤ j < m. Furthermore, since our interpretation consists of polynomials
with non-negative coefficients only, we have that [[f(. . . , s, . . .)]] ≥ [[f(. . . , t . . .)]]
whenever [[s]] ≥ [[t]] (weak monotonicity), hence

1. [[σ(vj)]] ≥ [[σ(uj+1)]] for all j, 1 ≤ j < m and
2. [[f ](σ(w1), . . . , σ(wn))]] ≥ [[f ](δ′, . . . , δ′n)]].

Since u1 = f ](x1, . . . , xn) and ui > vi for some i, 1 ≤ i ≤ m, we conclude

[[f ](δ1, . . . , δn)]] = [[σ(f ](x1, . . . , xn))]]
> [[σ(f ](w1, . . . , wn)]]
= [[f ](σ(w1), . . . , σ(wn))]]
≥ [[f ](δ′1, . . . , δ

′
n)]]

Therefore, [[f ](δ1, . . . , δn)]] > [[f ](δ′1, . . . , δ
′
n)]].

Since there is no nested cycle in DG(R, f ]), it follows that all remaining calls
to f in the evaluation of t are issued starting from the call f(δ′1, . . . , δ

′
n), i.e.,

1. There is no normal form δ such that C[δ] i−→∗RC ′[f(δ′′1 , . . . , δ
′′
n)] for normal

forms δ′′1 , . . . , δ
′′
n and a context C ′[ ], and

2. There is no j, 1 ≤ j ≤ n such that σ(wj)
i−→∗RC ′[f(w′′1 , . . . , w

′′
n)] for terms

w′′1 , . . . , w
′′
n and context C ′[ ].

Thus, Nf (t) = Nf (f(δ′1, . . . , δ
′
n)) + 1. By the induction hypothesis, we have

Nf (f(δ′1, . . . , δ
′
n)) ≤ [[f ](δ′1, . . . , δ

′
n)]]+1. Since [[f ](δ1, . . . , δn)]] > [[f ](δ′, . . . , δ′n)]],

and we use polynomial interpretations over an ordered domain of natural num-
bers (where n > m is equivalent to n ≥ m + 1), we finally conclude that
Nf (t) ≤ [[f ](δ1, . . . , δn)]] + 1 as desired. �

Theorem 3 Let P be a SAFE program, R = (F , R) be the transformed TRS
(i.e., R = RP), and f ∈ D be defined in P and such that d = ND(R, f ]) > 0.
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Let [[ ]] be a polynomial interpretation over the naturals satisfying that, for all
minimal cycles C in DG(R, f ]), (1) [[s]] ≥ [[t]] for all s → t ∈ U(R,C) ∪ C; and
(2) [[u]] > [[v]] for at least one u → v ∈ C. Let t = f(δ1, . . . , δn) where δ1, . . . , δn
are normal forms.Then, Nf (t) < (d+ 1)[[f

](δ1,...,δn)]]+1.

Proof. If the evaluation of f(δ1, . . . , δn) only involves the cycle C whose nesting
degree nd(C, f ]) is zero, then we are in the very same case of Theorem 2. Thus,
since d > 0, we have Nf (t) ≤ [[f ](δ1, . . . , δn)]] + 1 < (d + 1)[[f

](δ1,...,δn)]]+1 as
desired. Therefore, in the remainder of the proof, we assume that nested cycles
are involved during the evaluation sequence starting from f(δ1, . . . , δn). Thus,
there is an ‘outermost’ cycle C1 = {u1 → v1, . . . , up → vp}, for p ≥ 1, such that

1. u1 = f ](x1, . . . , xn),
2. vp = f ](vp1, . . . , vpn), and
3. there are 0 < k ≤ d right-hand sides vi of pairs ui → vi containing occur-

rences of f , i.e., vi = gi(f(v′i1, . . . , v
′
in), vi2, . . . , vim).

Note that an outermost cycle automatically ‘uses’ the innermost ones because
there is a call to (an instance of) f(v′i1, . . . , v

′
in) as part of any rewrite sequence

which is represented by cycle C1. As in the proof of Theorem 2, we proceed
by induction of the number Nf (t) of calls to f in the sequence. If Nf (t) = 1,
then since all polynomials contain non-negative coefficients only, we have that
[[f ](δ1, . . . , δn)]] ≥ 0; hence 2[[f](δ1,...,δn)]]+1 ≥ 2 > Nf (t). If Nf (t) > 1, then, we
can write the sequence as follows:

t = f(δ1, . . . , δn) i−→+
R g1(f(δ11 , . . . , δ

1
n), w1

2, . . . , w
1
m1

)
i−→+
R g1(δ1, w1

2, . . . , w
1
m)

i−→+
R g2(f(δ21 , . . . , δ

2
n), w2

2, . . . , w
2
m2

)
i−→+
R g2(δ2, w2

2, . . . , w
2
m2

)
i−→+
R · · ·

i−→+
R gk(f(δk1 , . . . , δ

k
n), wk2 , . . . , w

k
mk

)
i−→+
R gk(δk, wk2 , . . . , w

k
mk

)
i−→+
R C[f(δ′1, . . . , δ

′
n)]

i−→+
R C[δ′]

i−→∗R δ

for some context C[ ], terms w′1, . . . , w
′
n ∈ T (F ,X ), and normal forms δ′1, . . . , δ

′
n.

As in the proof of Theorem 2, we can conclude that:

[[f ](δ1, . . . , δn)]] > [[f ](δi1, . . . , δ
i
n)]] for 1 ≤ i ≤ k and [[f ](δ1, . . . , δn)]] > [[f ](δ′1, . . . , δ

′
n)]]

because each sequence from f(δ1, . . . , δn) to gi(f(δi1, . . . , δ
i
n), wi2, . . . , w

i
mi

) actu-
ally corresponds to a cycle in DG(R, f ]) starting from f ](x1, . . . , xn) and ending
in a pair f ](ui1, . . . , u

i
n)→ vi such that σi(uij) = δij for some substitution σi and

all j, 1 ≤ j ≤ n.
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Since mutually recursive definitions are not allowed in SAFE programs, we
know that all calls to f in the evaluation of t are issued starting either from
the calls f ](δi1, . . . , δ

i
n) for 1 ≤ i ≤ k or from f(δ′1, . . . , δ

′
n), i.e., Nf (t) =

Nf (f(δ′1, . . . , δ
′
n)) +

∑k
i=1Nf (f(δi1, . . . , δ

i
n)) + 1. By the induction hypothesis,

we have Nf (f(δ′1, . . . , δ
′
n)) < (d+ 1)[[f

](δ′1,...,δ
′
n)]]+1 (i.e., Nf (f(δ′1, . . . , δ

′
n)) + 1 ≤

(d + 1)[[f
](δ′1,...,δ

′
n)]]+1) and Nf (f(δi1, . . . , δ

i
n)) < (d + 1)[[f

](δi
1,...,δ

i
n)]]+1 (equiva-

lently, Nf (f(δi1, . . . , δ
i
n))+1 ≤ (d+1)[[f

](δi
1,...,δ

i
n)]]+1). Since [[f ](δ′1, . . . , δ

′
n)]]+1 ≤

[[f ](δ1, . . . , δn)]] and [[f ](δi1, . . . , δ
i
n)]] + 1 ≤ [[f ](δ1, . . . , δn)]], for 1 ≤ i ≤ k, it fol-

lows that Nf (f(δ′1, . . . , δ
′
n))+1 ≤ (d+1)[[f

](δ1,...,δn)]] and Nf (f(δi1, . . . , δ
i
n))+1 ≤

(d+ 1)[[f
](δ1,...,δn)]], for 1 ≤ i ≤ k. Therefore, since k ≤ d,

Nf (t) = Nf (f(δ′1, . . . , δ
′
n)) +

∑k
i=1Nf (f(δi1, . . . , δ

i
n)) + 1

≤ Nf (f(δ′1, . . . , δ
′
n)) +

∑d
i=1Nf (f(δi1, . . . , δ

i
n)) + 1

< (d+ 1) · (d+ 1)[[f
](δ1,...,δn)]]

= (d+ 1)[[f
](δ1,...,δn)]]+1

�

21


