Reasoning About Skeletons in Eden
Ricardo Pefia®, Clara Maria Segura®

4Departamento Sistemas Informéticos y Programacién, Universidad Complutense de Madrid, Spain

1. Introduction

The parallel-functional language Eden extends the lazy functional language Haskell by constructs
to explicitly define and launch processes. Skeletons can be implemented in the language itself and
can be invoked in parallel applications as higher-order functions. So, Eden can be used both as a
system-level implementation language and as an application-level parallel one. In order to be useful,
skeletons should be proved correct and should lead to an efficient use of the underlying machine.

The paper presents examples of system-level programming in Eden, showing the conciseness
of defining skeletons at a high level of abstraction. Efficiency reasoning is provided by accurate
cost models and correctness is proved by induction proofs. If the parallel program uses finite data
structures, the proof implies also successful fermination. If it uses infinite ones (i.e. streams), the
proof implies productivity. A program is productive if, whenever it receives continuous input, it
provides continuous output. Productivity amounts to deadlock freedom. The paper summarizes the
correctness and efficiency results contained in some other papers, specially [5-8] and [4].

The plan is as follows: in Section 2, we briefly describe Eden’s syntax and semantics; Section
3 shows examples of system level programming by defining two parallel implementations of the
skeleton map, providing their respective cost models and proving these implementations correct;
Section 4 survey other Eden skeletons in less detail. Finally, Section 5 provides some conclusions
and related work.

2. Eden features summary

A process abstraction is just the application of the predefined function process to a function. If
fid of type a —> b then process f is of type Process a b. It defines the behaviour of a process
receiving x: : a as input and returning £ x: :b as output. A process instantiation uses the predefined
infix operator:

(#) :: (Transmissible a, Transmissible b) => Process a b -> a -> b

In order to be able to transmit a value, its type must belong to the type class Transmissible. The
evaluation of an expression (process f) # e2 leads to the dynamic creation of a process together
with its interconnecting communication channels. The instantiating or parent process will be respon-
sible for evaluating and sending e2 via an implicitly generated channel, while the new child process
will evaluate the application £ e2 and return the result via another implicitly generated channel.
For input or output tuples, independent concurrent threads and channels are created to evaluate each
tuple component.

Once a process is running, only fully evaluated data objects are communicated. The only ex-
ceptions are lists, which are transmitted in a stream-like fashion, i.e. element by element. Each
list element is first evaluated to full normal form and then transmitted. Concurrent threads trying
to access input not yet available, are temporarily suspended. This is the only way in which Eden
processes synchronize. Let us remark that there are no explicit instructions handling channels or
messages as communication/synchronization is completely implicit.



Replacing in the definition of map

map :: (a > b) —> [a] —> [b]
map £ xs = [f x | x <— xs]

the function application £ x by a process instantiation, leads to a simple parallel map skeleton in
which a different process is launched for each element of the input list:

map_par :: (Transmissible a, Transmissible b) => (a -> b) -> [a] —-> [Db]
map_par f xs = [process f # x | x <- xs] ‘using' spine

The spine strategy (see [11]) is used to eagerly evaluate the spine of the process instantiation list.
Otherwise, the laziness of Haskell would prevent that all processes were immediately created.

Many-to-one communication is an essential feature for some parallel applications, but it spoils the
purity of functional languages, as it introduces non-determinism. In Eden, the predefined process
abstraction

merge :: Transmissible a => Process [[a]] [a]

is used to instantiate a process which fairly merges a list of input streams into a single (non-
deterministic) output stream. The incoming values are passed to the output stream in the order
in which they arrive. In this way merge provides many-to-one reactive communication. It can prof-
itably be used to quickly react to requests coming in an unpredictable order from a set of processes.
Even though the skeletons presented are deterministic, some of them are required to immediately
react to requests for work coming from a group of worker processes. An instantiation of merge will
propagate these requests as they are being produced.

Eden’s compiler' has been developed by extending the Glasgow Haskell Compiler (GHC) [9].
Eden’s runtime system (RTS) is an implementation of the DREAM abstract machine [1] on top of a
message passing library. Both PVM and MPI can be used. Therefore, the compiler can be ported to
any architecture where GHC and either PVM or MPI are available.

Eden provides no placement annotations. However, Eden’s RTS supports two modes to map
processes to processors, which can be chosen by the user for each execution. Round-robin mode:
If several processes are instantiated from a particular processor p, they are mapped to consecutive
processors starting with the one numbered one more than p. Random mode: Each processor maps
instantiated processes to randomly chosen processors.

The number of processors is provided by the integer constant nope. It can be used to adapt the
number of processes to the number of available processors.

3. The map skeleton in Eden

The definition of a skeleton consists of two parts: (1) A specification giving the type of the skeleton
and a description of its observable behavior as a higher-order function; and (2) the implementations.
A skeleton may have several implementations, and for each one two pieces must be provided: A
parallel program (the algorithm), and a formula describing its expected parallel execution time (the
cost model).

Cost models describe the parallel time of the algorithm. For a survey of cost models see e.g.
[2]. The cost models presented in this section are an adaptation to Eden of classical cost models
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Problem dependent parameters

N Size of the input
ty sequential CPU time for function f
nwl number of words of input message going to a child

nw(O  number of words of output message coming from a child
RTS dependent parameters
tereate CPU time in a parent processor to create a child process

ty CPU time in a child processor to create a new process
Architecture dependent parameters

P Number of processors

1) latency of a message, from start sending to start receiving
A start-up fixed CPU cost for sending or receiving a message
B per-word CPU cost for sending or receiving a message

Figure 1. Parameters of the cost models

appearing in the literature. In Figure 1 we show the different parameters involved in Eden skeletons
cost models. We will use the abbreviations:

tunpack[ = tpack[ =+ ,BTLH)I
tunpackO = tpackO =)+ ,BTLH)O

In the rest of this section we concentrate on two different implementations of the skeleton map. For
each one we present its cost model and a proof of its correctness.

For proving correctness, we will use induction on natural numbers and P(n) will denote a pred-
icate where the natural n will be related to the length of one or more lists in the program being
verified. Our aim is to prove Vn.P(n) using the ordinary induction rule:

P(0) Vn>0.P(n)= P(n+1)
Vn.P(n)

When the rule is applied to a function on finite lists, it proves the total correctness of the function,
1.e. the proof implies termination. When the rule is applied to a recursively defined list, it proves
that its length increases at each recursive call, i.e. the list is potentially infinite, and then the function
producing it is productive.

In what follows, |zs| denotes the length of the list xs and zs; the ith element of the list xs starting
from 0. For instance, the specification of map can be done by the following predicate:

Prap(n) déf‘v’f.Va:s. |zs|=n = map f s = [f z; | z; < zs]

It is trivial to prove its correctness by using the recursive definition of map. Notice that the proof
implies termination of map for finite lists zs and implies productivity for infinite ones.

3.1. Farm Implementation

In the farm implementation of map, called map_farm, a single process is created in each available
processor and tasks are evenly distributed into processors. Funtion f is applied to each task and
results are collected by the parent process. If the parent process load is low, we locate it in the same
processor as one of its children. Otherwise, we devote a separate process for the parent. A threshold
parameter is used to allow the skeleton to take this decision. This implementation is appropriate
when task granularity is uniform and an even distribution of the number of tasks amongst all the
processors is desired. The length of the task list must be rather higher than the number of available
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processors in order to improve the load balance. In order to instantiate processes correctly, the round-
robin mode is used by the RTS. The distribution and collection functions are also parameters of the
skeleton. Here is the implementation:

map_farm :: (Transmissible a, Transmissible b) => Int -> (a -> b) -> [a] —-> [b]
map_farm thr = farm np unshuffle shuffle where np | noPe > thr = noPe - 1
| otherwise = noPe
farm :: (Transmissible a, Transmissible b) =>
Int -> (Int -> [a] -> [[all) —>([[b]] => [b]) -> (a -> b) -> [a] —-> [b]

—_—

farm np unshuffle shuffle f tasks = shuffle (map_par (map f) (unshuffle np tasks))

Different strategies to split the work into the different processes can be used provided that, for every
list xs, (shuffle . unshuffle n) xs == xs holds. As this is standard Haskell programming, we
do not show these functions here. The cost model for map_farm is the following:

7JLmozp_farm = Lim’t + tworker + Lﬁnal

Lim’t = P(tcreate + tpack] + tunshu[ﬂel) + 5
Lﬁnal = 0+ tunpackO + tshu[ﬂel
tworker = t# + [%1 (tunpackl + tf + tpackO)

In essence, tmep_form = k1P + kg[%] + ks for some constants k1, ko and k3. In [5], some actual
executions are shown accurately agreing with this model.
In order to proof the correctnes of this implementation, we need to prove:

Prp_farm(n) dg‘v’f.sz. |xs|=n = map_farm f xs = [f z; | z; < xs]
We assume that the following predicate has been proved by induction on n:

Ppshuge (1, np) ' Vn.Vnp Vzs. |xs|= n = unshuffle np xs = xss | concat zss € perm(zs)

where perm gives the set of permutations of a list. We also assume that map par satisfies the predi-
cate Ppap(n) of map. Then, we have the following equivalences:

map_par (map f) (unshuffle np xs)
= {by the correctness of map_par}

map f ys | ys < unshuffle np xs]
= {by the correctness of map}

[[fy|y < ys||ys < unshuffle np xs]
= {by the correctness of map}

[[z | z < map f ys] | ys < unshuffle np xs]
= {by the predicate Pynshuge (12, np)}

[[z | z < zs] | zs < unshuffle np (map f xs)]
= {by change of notation}

unshuffle np (map f xs)

Then, by using the property (shuffle . unshuffle np) xs == xs we finally have:

map_farm f xs
= farmnp unshuffle shuffle f xs
shuffle (map_par (map f) (unshuffle np xs))
shuffle (unshuffle np (map f xs))
(shuffle . unshuffle np) (map f xs)
map f xs



3.2. Replicated Workers Implementation

The load balance obtained using the farm scheme can be poor when the granularity of the tasks is
not uniform. Instead of using a fixed task distribution scheme, we can distribute work on demand.

This gives rise to the replicated workers implementation of map. Initially, the manager assigns
two tasks to each of the workers. By assigning more than one task, the idle time between tasks is
minimized. Each time a worker finishes a task, it sends an acknowledgment message to the manager
including the task result, and then a new task is assigned to that process. The computation finishes
when the manager has received all the task results. By using the process merge, acknowledgments
from different processes can be received by the manager as soon as they are produced. If each ac-
knowledgment contains the identity of the sender process, the list of merged results can be inspected
in order to know who has sent the message, and then a new work can be assigned to it. In Eden, this
solution can be expressed as a set of mutually recursive list definitions:

map_rw £ ts = let tids = zip [0..] ts in
letrec outs = let urs = merge # outs
regs= [0..np-1] ++ [0..np-1] ++ map first urs
ins distribute tids regs
in [ (worker £ i) # in | (i,in) <- zip [0..] ins]
in sortMerge outs

worker £ i = process (\ts -> map (\(it,t) -> (i,it,f t)) ts)

The list tids just assign a different number to each task. The list of lists outs contains a result
list coming from each worker. The list urs produced by merge can be understood as the temporal
sequence of requests for new tasks. Function distribute assigns a new task form the list tids to
the worker who has first sent a request. The implementation of distribute and sortMerge are not
shown. They are assumed to satisfy the following predicates:

Pisirivute = |zs|<|rs| AVi € {0.. |rs| =1}.rs; € {0.np — 1} =
distribute xs rs = yss | |yss|=np A (V5 € {0..np — 1}.ordered(yss;))
AP ys,|=|ws| A concat ys € perm(zs)

Prorimerge def sortMerge xss = rs | rs = map third xs A ordered(zs) A s € perm(concat ss)

That is, distribute behaves rather similarly to unshuffle and sortMerge produces an ordered
list from a list of ordered lists. If the number N of tasks is much greater than the number P of
processors, the cost model for map_rw is:

tmap_rw = Linit + tworker + Lﬁnal

Linit = P(tCTeate + tpackl + tdistributel) + 5
Lﬁnal = 0 + tunpackO + tsortMergel

t# + %(tunpackl + tcomp + ZL’packO)

tworker

Assuming a perfect load balance, it can be considered that every worker receives the exact average
number of tasks, each task costing the average computing cost £ comp = % Zfil ts,, where 1, repre-
sents the cost of function f when applied to task 7. In ¢ gisiripuze, We consider accumulated the costs of
zip, ++ and map first functions when producing one element. Notice that the ceiling operation
has disappeared from %. Then, the simplified model is tpap_ry = k1P + kg% + k3. This is very
similar to that of #,,4p_gsmm but now tasks of different granularities are allowed. Again, [5] shows
examples accurately agreeing with this model.



In order to prove the correctness of the skeleton the following predicates are proposed for each
auxiliary list produced by the algorithm:

Pous(ts, f,n) 3o - . Mipp—1.0 = S otng AV € {0..np — 1}.n; =|outs;| Aordered(outs;)
A(Vj€{0.n; —1}r= fisy Niw € {0..np — 1} where (iw,it,r) = (outs;); )
Pos(n) €Vi e {0.n—1}.iw € {0.np — 1} where (iw, -, ) = urs;
Pregs(n) Vi e {0.n — 1}.regs, € {0.np — 1}
Pins(ts,n) 30 - - Mipp—1.0 = Swoln, AVie {0..np — 1}.n; =lins;| Nordered(ins;)
A (V5 € {0..n; — 1}.regs;, = i ANt = tsy where (it,t) = (ins;); )

The first one expresses that outs consists of np lists whose lengths sum is the number n of tasks.
Each sublist consists of triples (4w, it, r) and is ordered by task identity 7¢. The worker identities iw
are numbers in the range 0..np — 1, and values r are the result of applying f to the task in position
1t of list ts. The only important property of the second predicate is that the first component of each
triple of urs is an actual worker identity in the range 0..np — 1. A similar comment applies to
regs. The last predicate expresses that ins consists of np lists whose lengths sum is n. Each sublist
consists of tuples (it,t) and is ordered by task identity it. It also says that tasks are located in ins
according to the requests in list regs. The main theorem to be proved is that map_rw behaves as map:

Prap_ro(n) EVf.Vzs. |os|= n = map_rw £ zs = [f 2; | 2; 5]

We first prove the following predicate ()(n) by induction on the length n of the task list:
Q(n) EVfVis. [ts|= n = Pous(ts, f,n)

The proof scheme is as follows:

Base case n=0= ts =[] = Pous([], f,0)

Inductive step Assuming a task list ¢s of length n + 1 and the induction hypothesis P,y (s, f,n)
for a list s, the prefix of lenght n of s, we easily prove from the program:

Pouts(tsla fa n) = Purs(n) = Preqs(n + 2np)

Assuming Pyegs (1 + 2np), Puistrivute (tids, regs) and | tids |= n + 1, by the definition in the
program of ins, outs and worker, we have:

Pregs(n + 2np)A |tids|=n 4+ 1 = Pis(ts,n + 1) = Py(ts, f,n+ 1)

and then we are done.

This amounts to proving Vn.Q(n). Knowing that map rw £ ts = sortMerge outs and assuming
Piorimerge (0uts), it is straightforward to prove Vn.Ppqp ry(n), i.€. map_rw terminates and is correct
for all finite lists.

Productivity is an added value of some programs. It says that, even when the program does
not terminate, it will produce useful output during its work by processing increasing portions of
its infinite input. For instance, a function reversing a list is terminating for finite input but non



productive for an infinite one. Our map_rw skeleton produces an infinite result for an infinite number
of tasks. For lack of space, we only point out some key ideas about the proof:

First, the predicates P,y (ts, f, n), Puistribute and Prgp_ry (n) must be slightly modified. The new
definitions will allow that list outs, the output sublists produced by distribute and the list pro-
duced by map_rw may have any number of elements. Predicates Pyjsripute and Ppqp_ry Will have an
additional parameter n indicating the number of tasks processed up to some point in time. Predicates
oredered, perm and concat will be modified accordingly. The main theorem is now:

lts|= w = VYn.Vf.P,ys(ts, f,n)

Again the proof is done by induction on n. The key step is to show that P,y;(ts, f,n + 2np) =
P,y5(ts, f,n+1), which can be done by reasoning that [¢s¢..ts,] is a prefix of [tsg..tS,+2np—1]- This
will show that the list outs is productive. By separately proving that sortMerge is productive, also
will do map_rw. More details can be found in [6] and [8].

4. Other Eden Skeletons

More examples of Eden skeletons can be found in [5,4]. For instance, there is a divide and conquer
skeleton where a dynamic tree of processes is created in which each process is connected to its
parent. An integer parameter determines the maximum level after which no more children processes
are generated, and the sequential version is used instead. The implementation is as follows:

dc_naive :: (Transmissible a, Transmissible b) =>
Int -> (a -> Bool) -> (a —> b) ->( a -> [a]) —> (a —> [b] -> b) —> a -> Db
dc_naive 0 trivial solve split combine = dc trivial solve split combine
dc_naive d trivial solve split combine x
| trivial x = solve x
| otherwise = combine x c
where ¢ = map_par (dc_naive (d-1) trivial solve split combine) (split x)

Notice here that there is no single manager process, as it was the case in the map skeletons, because
every child is a parent process of the next process level. A better implementation is obtained by first
flattening the task tree and producing a list of tasks. Then the map.rw skeleton is used to solve the
tasks and finally a single solution is computed from the list of results.

A pipeline skeleton consists of a list of stages. Each stage applies a different function to the result
obtained in the previous one. A naive parallelization of this scheme can be done by instantiating a
different process to evaluate each of the pipeline stages. This can be expressed in Eden as follows:

pipe_naive :: Transmissible a => [[a]l->[a]] -> [a] —-> [a]
pipe_naive fs xs = (ppipe fs) # xs

ppipe :: Transmissible a => [[a]l->[a]] -> Process [a] [a]
ppipe [f] = process f

ppipe (f:fs) = process (\xs —-> (ppipe fs) # (f xs))

This definition does not achieve the desired topology because the last process of the pipe cannot
sends the values directly to the main process. Instead, a hierarchical topology is created. In order to
get a flat one, a better definition makes use of Eden’s dynamic channels facility, not explained in this
paper (see for instance [4]). In [7] a manual transformation was proposed which allows to obtain a
flat solution based on dynamic channels by using as specification a hierachical one. The method has
been also applied to ring, grid and torus skeletons. Cost models and proof of correctness have been
produced for most of these implementations (confirm in [5,8]).



5. Conclusions

The main differences between Eden and more traditional skeleton-based languages are two: (1)
Eden is functional while the vast majority of skeleton implementation languages are imperative, and
(2) skeletons can be implemented and used within the same language. In other approaches, skeletons
are often implemented in a low-level language different from the one in which they are used. For
instance, in PMLS [10] Scaife et al. extend an ML compiler by machinery which automatically
searches the given program for higher-order functions which are suitable for parallelisation. During
compilation these are replaced by efficient low-level implementations written in C and MPI.

The main point of this paper has been showing that the conciseness of the functional notation
allows to conduct formal proofs of the skeletons with a reasonable effort. Both equational and
predicate based reasoning have been used, and both termination and productivity of skeletons have
been shown by induction on natural numbers. In [8] Eden skeletons were proved terminating and/or
productive by using an extension of the sized type theory by Hughes and Pareto [3].

Additionaly, cost models have been defined from the functional implementations in which low
level runtime system an arquitecture parameters appear. These cost models allow the programmer to
reason about the runtime behaviour of the corresponding parallel programs.
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