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ABSTRACT
Starting from P. Sestoft semantics for lazy evaluation, we
define a new semantics in which normal forms consist of vari-
ables pointing to lambdas or constructions. This is in accor-
dance with the more recent changes in the Spineless Tagless
G-machine (STG) machine, where constructions only ap-
pear in closures (lambdas only appeared in closures already
in previous versions). We prove the equivalence between the
new semantics and Sestoft’s. Then, a sequence of STG ma-
chines are derived, formally proving the correctness of each
derivation. The last machine consists of a few imperative
instructions and its distance to a conventional language is
minimal.

The paper also discusses the differences between the final
machine and the actual STG machine implemented in the
Glasgow Haskell Compiler.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics, syntax ; D.3.2 [Programming Lan-
guages]: Language Classifications—applicative (functional)
languages; D.3.4 [Programming Languages]: Processors—
code generation, compilers ; F.3.2 [Logics and meanings
of programs]: Semantics of Programming Languages—op-
erational semantics
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1. INTRODUCTION

The Spineless Tagless G-machine (STG) [6] is at the heart
of the Glasgow Haskell Compiler (GHC) [7] which is perhaps
the Haskell compiler generating the most efficient code. For
a description of Haskell language see [8]. Part of the secret
for that is the set of analysis and transformations carried
out at the intermediate representation level. Another part
of the explanation is the efficient design and implementation
of the STG machine.

A high level description of the STG can be found in [6].
If the reader is interested in a more detailed view, then the
only available information is the Haskell code of GHC (about
80.000 lines, 12.000 of which are devoted to the implemen-
tation of the STG machine) and the C code of its different
runtime systems (more than 40.000 lines)[1].

In this paper we provide a step-by-step derivation of the
STG machine, starting from a description higher-level than
that of [6] and arriving at a description lower-level than that.

Our starting point is a commonly accepted operational
semantics for lazy evaluation provided by Peter Sestoft in
[10] as an improvement of John Launchbury’s well-known
definition in [4]. Then, we present the following refinements:

1. A new operational semantics, which we call semantics
S3 —acknowledging that semantics 1 and 2 were de-
fined by Mountjoy in a previous attempt [5]—, where
normal forms may appear only in bindings.

2. A first machine, called STG-1, derived from S3 in
which explicit replacement of pointers for variables is
done in expressions.

3. A second machine STG-2 introducing environments in
closures, case alternatives, and in the control expres-
sion.

4. A third machine, called ISTG (I stands for imperative)
with a very small set of elementary instructions, each
one very easy to be implemented in a conventional
language such as C.

5. A translation from the language of STG-2 to the lan-
guage of ISTG in which the data structures of STG-2
are represented (or implemented) by the ISTG data
structures.



e → x -- variable
| λx.e -- lambda abstraction
| e x -- application
| letrec xi = ei in e -- recursive let
| C xi -- constructor application
| case e of Ci xij → ei -- case expression

Figure 1: Launchbury’s normalized λ-calculus

At each refinement, a formal proof of the soundness and
completeness of the lower level with respect to the upper
one is carried out 1 . In the end, the final implementation is
shown correct with respect to Sestoft’s operational seman-
tics.

The main contribution of the work is showing that an ef-
ficient machine such as STG can be presented, understood,
and formally reasoned about at different levels of abstrac-
tion. Also, there are some differences between the machine
we arrive at and the actual STG machine implemented in
the Glasgow Haskell Compiler. We argue that some design
decisions in the actual STG machine are not properly justi-
fied.

The plan of the paper is as follows: after this introduc-
tion, in Section 2, a new language called FUN is introduced
and the semantics S3 for this language is defined. Two the-
orems relating Launchbury’s original language and seman-
tics to the new ones are presented. Section 3 defines the
two machines STG-1 and STG-2. Some propositions show
the consistency between both machines and the correctness
and completeness of STG-1 with respect to S3, eventhough
the latter creates more closures in the heap and produces
different (but equivalent) normal forms. Section 4 defines
machine ISTG and Section 5 defines the translation from
STG-2 expressions to ISTG instructions. Two invariants are
proved which show the correctness of the translation. Sec-
tion 6 discusses the differences between our translation and
the actual implementation done by GHC. Finally, Section 7
concludes.

2. A NEW SEMANTICS FOR LAZY EVAL-
UATION

We begin by reviewing the language and semantics given
by Sestoft as an improvement to Launchbury’s semantics.
Both share the language given in Figure 1 where Ai de-
notes a vector A1, . . . , An of subscripted entities. It is a nor-
malized λ-calculus, extended with recursive let, constructor
applications and case expressions. Sestoft’s normalization
process forces constructor applications to be saturated and
all applications to only have variables as arguments. Weak
head normal forms are either lambda abstractions or con-
structions. Throughout this section, w will denote (weak
head) normal forms.

Sestoft’s semantic rules are given in Figure 2. There, a
judgement Γ : e ⇓A ∆ : w denotes that expression e, with
its free variables bound in heap Γ, reduces to normal form
w and produces the final heap ∆. When fresh pointers are
created, freshness is understood w.r.t. (dom Γ) ∪ A, where
A contains the addresses of the closures under evaluation

1The details of the proofs can be found in a
technical report at one of the author’s page
http://dalila.sip.ucm.es/˜albertoe.

Γ : λx.e ⇓A Γ : λx.e Lam

Γ : C pi ⇓A Γ : C pi Cons

Γ : e ⇓A ∆ : λx.e′ ∆ : e′[p/x] ⇓A Θ : w

Γ : e p ⇓A Θ : w App

Γ : e ⇓A∪{p} ∆ : w

Γ ∪ [p 7→ e] : p ⇓A ∆ ∪ [p 7→ w] : w Var

Γ ∪ [pi 7→ êi] : ê ⇓A ∆ : w

Γ : letrec xi = ei in e ⇓A ∆ : w
where pi fresh

Letrec

Γ : e ⇓A ∆ : Ck pj ∆ : ek[pj/xkj ] ⇓A Θ : w

Γ : case e of Ci xij → ei ⇓A Θ : w Case

Figure 2: Sestoft’s natural semantics

(see rule Var). The notation ê in rule Letrec means the re-
placement of the variables xi by the fresh pointers pi. This
is the only rule where new closures are created and added
to the heap. We use the term pointers to refer to dynam-
ically created free variables, bounded to expressions in the
heap, and the term variables to refer to (lambda-bound, let-
bound or case-bound) program variables. We consistently
use p, pi, . . . to denote free variables and x, y, . . . to denote
program variables.

J. Mountjoy’s [5] had the idea of changing Launchbury-
Sestoft’s language and semantics in order to get closer to the
STG language, and then to derive the STG machine from
the new semantics.

He developed two different semantics: In the first one,
which we call semantics S1, the main change was that nor-
mal forms were either constructions (as they were in Ses-
toft’s semantics) or variables pointing to closures containing
λ-abstractions, instead of just λ-abstractions. The reason
for this was to forbid a λ-abstraction in the control expres-
sion as it happens in the STG machine. Another change
was to force applications to have the form x x1, i.e. consist-
ing of a variable in the functional part. This is also what
the STG language requires. These changes forced Mountjoy
to modify the source language and to define a normaliza-
tion from Launchbury’s language to the new one. Mountjoy
proved that the normalization did not change the normal
forms arrived at by both semantics.

The second semantics, which we call semantics S2, forced
applications to be done at once to n arguments instead of
doing it one by one. Correspondingly, λ-abstractions were
allowed to have several arguments. This is exactly what
the STG machine requires. Semantics S2 was informally
derived and contained some mistakes. In particular, (cf. [5,
pag. 171]) rule AppM makes a λ-abstraction to appear in
the control expression, in contradiction with the desire of
having λ-abstractions only in the heap.

Completing and correcting Mountjoy’s work we have de-
fined a new semantics S3 in which the main changes in the
source language w.r.t. Mountjoy’s are the following:

1. We force constructor applications to appear only in
bindings, i.e. in heap closures. Correspondingly, nor-
mal forms are variables pointing to either λ-abstractions
or constructions. We will use the term lambda forms to
refer to λ-abstractions or constructions alike. The mo-
tivation for this decision is to generate more efficient
code as it will be seen in Section 5.1.



e → e xi
n -- n > 0, application

| x -- variable
| letrec xi = lf i in e -- recursive let
| case e of alti -- case expression

alt → C xj → e -- case alternative

lf → λ xi
n.e -- n > 0, lambda abstraction

| C xi
n -- constructor application

| e -- expression

Figure 3: Language FUN

2. We relax applications to have the form e xi
n, where e is

an arbitrary expression (excluding, of course, lambda
forms). The initial motivation for this was not to in-
troduce unjustified restrictions. In the conclusions we
discuss that the generated code is also more efficient
than the one produced by restricting applications to
be of the form x xi

n.

Additionally, our starting point is Sestoft’s semantics in-
stead of Launchbury’s. The main difference is that Sestoft
substitutes fresh pointers for program variables in rule Letrec
while Launchbury substitutes fresh variables for all bound
variables in rule Var instead.

The syntax of the language, called FUN, is shown in Fig-
ure 3. Notice that applications are done to n arguments
at once, being e xi

n an abbreviation of (. . . (e x1) . . .) xn,
and that consequently λ-abstractions may have several ar-
guments. Its operational semantics, called S3 is given in
Figure 4. For simplicity, we have eliminated the set A of
pending updates appearing in Sestoft’s semantics. This set
is not strictly needed provided that the fresh name genera-
tor for pointers does not repeat previously generated names
and provided that pointer’s names are always distinguish-
able from program variables. In rule CaseS3, expression ek

is the righthand side expression of the alternative altk. The
notation Γ[p 7→ e] highlights the fact that (p 7→ e) ∈ Γ,
and Γ ∪ [p 7→ e] means the disjoint union of Γ and (p 7→ e).
Please notice that this notation may not coincide with other
notations in which Γ and Γ[p 7→ e] denote different heaps.
Finally notice that, besides rule LetrecS3, also rule AppS3

creates closures in the heap.
Language FUN is at least as expressive as Launchbury’s

λ-calculus. The following normalization function transforms
any Launchbury’s expression into a semantically equivalent
FUN expression.

Definition 1. We define the normalization function N :
Launch → FUN:

N x
def
= x

N (e x)
def
= (N e) x

N (λ x.e)
def
= letrec y = N ′ (λ x.e) in y

, y fresh

N (C xi)
def
= letrec y = C xi in y

, y fresh

N (letrec xi = ei
n in e)

def
= letrec xi = N ′ ei

n
in N e

N (case e of Ci yij → ei)
def
= case N e of Ci yij → N ei

N ′, N ′′ : Launch → FUN:

N ′ (C xi
n)

def
= C xi

n

N ′ e
def
= N ′′ e , e 6= C xi

n

N ′′ (λ x.e)
def
= λ x.N ′′ e

N ′′ e
def
= N e , e 6= λ x.e′

The following proposition prove that the normalization
functions are well defined.

Proposition 1.

1. Let e ∈ Launch then N e ∈ FUN

2. Let e ∈ lf then N ′ e ∈ lf

3. Let e 6= λx.e′ and e 6= C xi then, N e = N ′ e

4. (N e)[pi/xi] = N (e[pi/xi])

5. (N ′ e)[pi/xi] = N ′ (e[pi/xi])

Proof.

1. By structural induction on e.

2. Trivial.

3. Trivial.

4. By definition of N and of substitutions.

5. By definition of N ′ and of substitutions.

To see that both semantics reduce an expression to equiv-
alent normal forms, first we prove that the normalization
does not change the meaning of an expression within Ses-
toft’s semantics. Then, we prove that both semantics reduce
any FUN expression to equivalent normal forms, provided
that such normal forms exist.

2.1 Soundness and completeness
The following two propositions prove that the normaliza-

tion does not change the meaning of an expression. We use
the following notation: α denotes a one-to-one renaming of
pointers, and Γ ⊆α Γ′ means that α Γ ⊆ Γ′. This is needed
to express the equivalence between the heaps of both seman-
tics up to some renaming α. As S3 generates more closures
than Sestoft’s, it is not possible to guarantee that the fresh
pointers are exactly the same in the two heaps.

Proposition 2. (Sestoft ⇒ Sestoft∗) For all e ∈ Launch
we have:

{ } : e ⇓ ∆ : w ⇒
8
<
:
{ } : N e ⇓ ∆∗ : w∗

∃α.

�
w∗ = N ′ (α w)
N ′ ∆ ⊆α ∆∗

Proof. By induction on the number of reductions of
Launchbury expressions.

Proposition 3. (Sestoft∗ ⇒ Sestoft) For all e ∈ FUN
we have:

{ } : e ⇓ ∆ : w ⇒

∀e′ ∈ Launch.

0
@N e′ = e ⇒

8
<
:
{ } : e′ ⇓ ∆′ : w′

∃α.

�
N ′ (α w′) = w
N ′ ∆′ ⊆α ∆

1
A



Γ[p 7→ λxi
n.e] : p ↓ Γ : p LamS3

Γ[p 7→ C pi] : p ↓ Γ : p ConsS3

Γ : e ↓ ∆[p 7→ λxi
n.λyi

m.e′] : p

Γ : e pi
n ↓ ∆ ∪ [q 7→ λyi

m.e′[pi/xi
n
]] : q

m, n > 0, q fresh
AppS3

Γ : e ↓ ∆[p 7→ λxi
m.e′] : p ∆ : e′[pi/xi

m
] pm+1 . . . pn ↓ Θ[q 7→ w] : q

Γ : e pi
n ↓ Θ : q

n ≥ m
App′S3

Γ : e ↓ ∆[q 7→ w] : q

Γ ∪ [p 7→ e] : p ↓ ∆ ∪ [p 7→ w] : q VarS3

Γ ∪ [pi 7→ ˆlf i] : ê ↓ ∆[p 7→ w] : p

Γ : letrec xi = lf i in e ↓ ∆ : p
pi fresh

LetrecS3

Γ : e ↓ ∆[p 7→ Ck pj ] : p ∆ : ek[pj/ykj ] ↓ Θ[q 7→ w] : q

Γ : case e of Ci yij → ei ↓ Θ : q CaseS3

Figure 4: Semantics S3

Proof. By induction on the number of reductions of
Launchbury expressions.

Now we prove the equivalence between the two seman-
tics. We consider only FUN expressions because it has been
proved that the normalization does not change the meaning
of an expression.

Proposition 4. (Sestoft ⇒ S3, completeness of S3) For
all e ∈ FUN we have:

{ } : e ⇓ ∆ : w ⇒
8
<
:
{ } : e ↓ ∆′[p 7→ w′] : p

∃α.

�
α w = w′

∆ ⊆α ∆′

Proof. By induction on the number of reductions of
FUN expressions.

Proposition 5. (S3 ⇒ Sestoft, soundness of S3) For all
e ∈ FUN we have:

{ } : e ↓ ∆[p 7→ w] : p ⇒
8
<
:
{ } : e ⇓ ∆′ : w′

∃α.

�
α w′ = w
∆′ ⊆α ∆

Proof. By induction on the number of reductions of
FUN expressions.

Once adapted the source language to the STG language,
we are ready to derive an STG-like machine from semantics
S3.

3. A VERY SIMPLE STG MACHINE
Following a similar approach to Sestoft MARK-1 machine

[10], we first introduce a very simple STG machine, which
we will call STG-1, in which explicit variable substitutions
are done. A configuration in this machine is a triple (Γ, e, S)
where Γ represents the heap, e is the control expression and

S is the stack. The heap binds pointers to lambda forms
which, in turn, may reference other pointers. The stack
stores three kinds of objects: arguments pi of pending appli-
cations, case alternatives alts of pending pattern matchings,
and marks #p of pending updates.

In Figure 5, the transitions of the machine are shown.
They look very close to the lazy semantics S3 presented in
Section 2. For instance, the single rule for letrec in Fig-
ure 5 is a literal transcription of the LetrecS3 rule of Figure
4. The semantic rules for case and applications are split
each one into two rules in the machine. The semantic rule
for variable is also split into two in order to take care of
updating the closure. So, in principle, an execution of the
STG-1 machine could be regarded as the linearization of the
semantic derivation tree by introducing an auxiliary stack.

But sometimes appearances are misleading. The theorem
below shows that in fact STG-1 builds less closures in the
heap than the semantics and it may arrive to different (but
semantically equivalent) normal forms. In order to prove
the soundness and completeness of STG-1, we first enrich
the semantics with a stack parameter S in the rules. The
new rules for ↓S (only those which modify S) are shown in
Figure 6. It is trivial to show that the rules are equivalent to
the ones in Figure 4 as the stack is just an observation of the
derivations. It may not influence them. The following theo-
rem establishes the correspondence between the (enriched)
semantics and the machine.

Proposition 6. Given Γ, e and S, then Γ : e ↓S ∆[p 7→
w] : p iff (Γ, e, S) →∗ (∆′, p′, S′), where

1. ∆′ ⊆ ∆

2. if ∆[p 7→ C pi
n] then S = S′, p = p′ and ∆′[p′ 7→

C pi
n]

3. if ∆[p 7→ λxi
n.e′] then there exists m ≥ 0 s.t. ∆′[p′ 7→

λyi
m.λxi

n.e′′] and S′ = qi
m : S and e′ = e′′[qi/yi

m
]



Heap Control Stack rule

Γ letrec {xi = lf i} in e S letrec (1)

=⇒ Γ ∪ [pi 7→ lf i[pj/xj ]] e[pi/xi] S

Γ case e of alts S case1
=⇒ Γ e alts : S

Γ[p 7→ Ck pi] p Cj yji → ej : S case2

=⇒ Γ ek[pi/yki] S

Γ e pi
n S app1

=⇒ Γ e pi
n : S

Γ[p 7→ λxi
n.e] p pi

n : S app2

=⇒ Γ e[pi/xi
n
] S

Γ ∪ [p 7→ e′] p S var1
=⇒ Γ e′ #p : S

Γ[p 7→ λxi
k.λyi

m.e] p pi
k : #q : S var2

=⇒ Γ ∪ [q 7→ p pi
k] p pi

k : S

Γ[p 7→ Ck pi] p #q : S var3
=⇒ Γ ∪ [q 7→ Ck pi] p S

(1) pi are distinct and fresh w.r.t. Γ, letrec {xi = lf i} in e, and S

Figure 5: The STG-1 Machine

Proof. By induction on the number of reductions of
FUN expressions.

The proposition shows that the semantic rule AppS3 of
Figure 4 is not literally transcribed in the machine. The
machine does not create intermediate lambdas in the heap
unless an update is needed. Rule app2 in Figure 5 applies a
lambda always to all its arguments provided that they are in
the stack. For this reason, a lambda with more parameters
than that of the semantics may be arrived at as normal
form of a functional expression. Also for this reason, an
update mark may be interspersed with arguments in the
stack when a lambda is reached (see rule var2 in Figure 5).
A final implication is that the machine may stop with m
pending arguments in the stack and a variable in the control
expression pointing to a lambda with n > m parameters.
The semantics always ends a derivation with a variable as
normal form and an empty stack.

Again, following Sestoft and his MARK-2 machine, once
we have proved the soundness and completeness of STG-1,
we introduce STG-2 having environments instead of explicit
variable substitutions. Also, we add trimmers to this ma-
chine so that environments kept in closures and in case al-
ternatives only reference the free variables of the expression
instead of all variables in scope. A configuration of STG-2
is a quadruple (Γ, e, E, S) where E is the environment of e,
the alternatives are pairs (alts, E), and a closure is a pair
(lf , E). Now expressions and lambda forms keep their origi-
nal variables and the associated environment maps them to
pointers in the heap. The notation E |t means the trimming
of environment E to the trimmer t. A trimmer is just a col-
lection of variable names. The resulting machine is shown
in Figure 7.

Proposition 7. Given a closed expression e0.

({ }, e0, [ ])
STG-1−→ (∆, q, pi

n) where either:

• ∆[q 7→ C qi
m] ∧ n = 0

• or ∆[q 7→ λxi
m.e] ∧ m > n ≥ 0

if and only if ({ }, e0, { }, [ ])
STG-2−→ (Γ, x, E[x 7→ q], pi

n)) and
either:

• Γ[q 7→ (C xi
m, {xi 7→ qi

m})] ∧ n = 0

• or Γ[q 7→ (λxi
m.e′, E′)] ∧ m > n ≥ 0 ∧ e = E′ e′.

Proof. By induction on the number of reductions.

4. AN IMPERATIVE STG MACHINE
In this Section we ‘invent’ an imperative STG machine,

called ISTG, by defining a set of machine instructions and
an operational semantics for them in terms of the state tran-
sition that each instruction produces. In fact, this machine
tries to provide an intermediate level of reasoning between
the STG-2 machine and the final C implementation. In
the actual GHC implementation, ‘below’ the operational de-
scription of [6] we find only a translation to C. By looking
at the compiler and at the runtime system listings, one can
grasp some details, but many others are lost. We think that
the gap to be bridged is too high. Moreover, it is not pos-
sible to reason about the correctness of the implementation
when so many details are introduced at once. The ISTG ar-
chitecture has been inspired by the actual implementation of
the STG machine done by GHC, and the ISTG instructions
have been derived from the STG-2 machine by analyzing the
elementary steps involved in every machine transition.

An ISTG machine configuration consists of a 5-tuple (is, S,
node, Γ, cs), where is is a machine instruction sequence ended
with the instruction ENTER or RETURNCON, S is the
stack, node is a heap pointer pointing to the closure under
execution (the one to which is belongs to), Γ is the heap and
cs is a code store where the instruction sequences resulting
from compiling the program expressions are kept.

We will use the following notation: a for pointers to clo-
sures in Γ, as and ws for lists of such pointers, and p for



Γ : e ↓pi
n:S ∆[p 7→ λxi

n.λyi
m.e′] : p

Γ : e pi
n ↓S ∆ ∪ [q 7→ λyi

m.e′[pi/xi
n
]] : q

m, n > 0, q fresh
AppS3

Γ : e ↓pi
n:S ∆[p 7→ λxi

m.e′] : p ∆ : e′[pi/xi
m

] pm+1 . . . pn ↓S Θ[q 7→ w] : q

Γ : e pi
n ↓S Θ : q

n ≥ m
App′S3

Γ : e ↓#p:S ∆[q 7→ w] : q

Γ ∪ [p 7→ e] : p ↓S ∆ ∪ [p 7→ w] : q VarS3

Γ : e ↓alts:S ∆[p 7→ Ck pj ] : p ∆ : ek[pj/ykj ] ↓S Θ[q 7→ w] : q

Γ : case e of alts ↓S Θ : q CaseS3

Figure 6: The enriched semantics

pointers to code fragments in cs. By cs[p 7→ is] we de-
note that the code store cs maps pointer p to the instruc-
tion sequence is and, by cs[p 7→ isi

n
], that cs maps p to a

vectored set of instruction sequences is1, . . . , isn, each one
corresponding to an alternative of a case expression with
n constructors C1, . . . , Cn. Also, S ! i will denote the i-th
element of the stack S counting from the top and starting
at 0. Likewise, nodeΓ ! i will denote the i-th free variable of
the closure pointed to by node in Γ, this time starting at 1.

Stack S may store pointers a to closures in Γ, pointers p
to code sequences and code alternatives in cs, and update
marks #a indicating that closure pointed to by a must be
updated. A closure is a pair (p,ws) where p is a pointer
to an instruction sequence is in cs, and ws is the closure
environment, having a heap pointer for every free variable
in the expression whose translation is is.

These representation decisions are very near to the GHC
implementation. In its runtime system all these elements
(stack, heap, node register and code) are present [9]. Our
closures are also a small simplification of theirs.

In Figure 8, the ISTG machine instructions and its op-
erational semantics are shown. The machine instructions
BUILDENV, PUSHALTS and UPDTMARK roughly cor-
respond to the three possible pushing actions of machine
STG-2. The SLIDE instruction has no clear correspondence
in the STG-2. As we will see in Section 5, it will be used
to change the current environment when a new closure is
entered. Instructions ALLOC and BUILDCLS will imple-
ment heap closure creation in the letrec rule of STG-2. Both
BUILDENV and BUILDCLS make use of a list of pairs, each
pair indicating whether the source variable is located in the
stack or in the current closure. Of course, it is not intended
this test to be done at runtime. An efficient translation of
these ‘machine’ instructions to an imperative language will
generate the appropriate copy statement for each pair.

Instructions ENTER and RETURNCON are typical of
the actual STG machine as described in [6]. It is interesting
to note that it has been possible to describe our previous
STG machines without any reference to them. In our view,
they belong to ISTG, i.e. to a lower level of abstraction. Fi-
nally, instruction ARGCHECK, which implements updates
with lambda normal forms, is here at the same level of ab-
straction as RETURNCON, which implements updates with
constructions normal forms. Predefined code is stored in cs
for updating with a partial application and for blackholing

a closure under evaluation. The corresponding code point-
ers are respectively called pn+1

pap and pbh in Figure 8. The
associated code is the following:

pbh = [ ]
pn+1
pap = [BUILDENV [(NODE , 1), . . . , (NODE , n + 1) ],

ENTER ]

The code of a blackhole just blocks the machine as there
is no instruction to execute. There is predefined code for
partial applications with different values for n. The code
just copies the closure into the stack and jumps to the first
pointer that is assumed to be pointing to a λ-abstraction
closure.

The translation to C of the 9 instructions of the ISTG
should appear straightforward for the reader. For instance,
BUILDCLS and BUILDENV can be implemented by a se-
quence of assignments, copying values to/from the stack
an the heap; PUSHALTS, UPDTMARK and ENTER do
straightforward stack manipulation; SLIDE is more involved
but can be easily translated to a sequence of loops moving
information within the stack to collapse a number of stack
fragments. The more complex ones are RETURNCON and
ARGCHECK. Both contains a loop which updates the heap
with normal forms (respectively, constructions and partial
applications) as long as they encounter update marks in the
stack. Finally, the installation of a new instruction sequence
in the control made by ENTER and RETURNCON are im-
plemented by a simple jump.

5. FORMAL TRANSLATION FROM STG-2
TO ISTG

In this Section, we provide first the translation schemes for
the FUN expressions and lambda forms and then prove that
this translation correctly implements the STG-2 machine on
top of the ISTG machine. Before embarking into the details,
we give some hints to intuitively understand the translation:

• The ISTG stack will represent not only the STG-2
stack, but also (part of) the current environment E
and all the environments associated to pending case
alternatives. So, care must be taken to distinguish be-
tween environments and other objects in the stack.

• The rest of the current environment E is kept in the
current closure. The translation knows where each free



Heap Control Environment Stack rule

Γ letrec {xi = lf i |ti} in e E S letrec (1)

⇒ Γ ∪ [pi 7→ (lf i, E
′ |ti)] e E′ S

Γ case e of alts |t E S case1
⇒ Γ e E (alts, E |t) : S

Γ[p 7→ (Ck xi, {xi 7→ pi})] x E{x 7→ p} (alts, E′) : S case2 (2)
⇒ Γ ek E′ ∪ {yki 7→ pi} S

Γ e xi
n E{xi 7→ pi

n} S app1
⇒ Γ e E pi

n : S

Γ[p 7→ (λxi
n.e, E′)] x E{x 7→ p} pi

n : S app2
⇒ Γ e E′ ∪ {xi 7→ pi

n} S

Γ ∪ [p 7→ (e, E′)] x E{x 7→ p} S var1
⇒ Γ e E′ #p : S

Γ[p 7→ (λxi
k.λyi

n.e, E′)] x E{x 7→ p} pi
k : #q : S var2 (3)

⇒ Γ ∪ [q 7→ (x xi
k, E′′]) x E pi

k : S

Γ[p 7→ (Ck xi, E
′)] x E{x 7→ p} #q : S var3

⇒ Γ ∪ [q 7→ (Ck xi, E
′)] x E S

(1) pi are distinct and fresh w.r.t. Γ, letrec {xi = lf i} in e, and S. E′ = E ∪ {xi 7→ pi}
(2) Expression ek corresponds to alternative Ck yki → ek in alts
(3) E′′ = {x 7→ p, xi 7→ pi

k}

Figure 7: The STG-2 machine

variable is located by maintaining two compile-time
environments ρ and η. The first one ρ corresponds to
the environment kept in the stack, while the second one
η corresponds to the free variables accessed through
the node pointer.

• The stack can be considered as divided into big blocks
separated by code pointers p pointing to case alter-
natives. Each big block topped with such a pointer
corresponds to the environment of the associated al-
ternatives.

• In turn, each big block can be considered as divided
into small blocks, each one topped with a set of ar-
guments of pending applications. The compile-time
environment ρ is likewise divided into big and small
blocks, so reflecting the stack structure.

• When a variable is reached in the current instruction
sequence, an ENTER instruction is executed. This
will finish the current sequence and start a new one.
The upper big block of the stack must be deleted (cor-
responding to changing the current environment) but
arguments of pending applications must be kept. This
stack restructuring is accomplished by a SLIDE oper-
ation with an appropriate argument.

Definition 2. A stack environment ρ is a list [(δk, mk, nk),
. . . , (δ1, m1, n1)] of blocks. It describes the variables in the
stack starting from the top. In a block (δ, m, n), δ is an
environment mapping exactly m− | n | program variables
to disjoint numbers in the range 1..m− | n |. The empty
environment, denoted ρ∅ is the list [({}, 0, 0)].

A block (δ, m, n) corresponds to a small block in the above
explanation. Blocks with n = −1, are topped with a code
pointer pointing to alternatives. So, they provide a separa-
tion between big blocks. The upper big block consists of all

the small blocks up to (and excluding) the first small block
with n = −1. Blocks with n > 0 have m − n free variables
and are topped with n arguments of pending applications.
The upper block is the only one with n = 0 meaning that it
is not still closed and that it can be extended.

Definition 3. A closure environment η with n variables is
a mapping from these variables to disjoint numbers in the
range 1..n.

Definition 4. The offset of a variable x in ρ from the top
of the stack, denoted ρ x, is given by

ρ x
def
= (

kX

i=l

mi)− δl x, being x ∈ dom δl

If the initial closed expression to be translated has differ-
ent names for bound variables, then the compile time envi-
ronments ρ and η will never have duplicate names. It will be
proved below that every free variable of an expression being
compiled will necessarily be either in ρ or in η, and never in
both. This allows us to introduce the notation (ρ, η) x to
mean

(ρ, η) x
def
=

�
(STACK , ρ x) if x ∈ dom ρ
(NODE , η x) if x ∈ dom η

The stack environment may suffer a number of operations:
closing the current small block with a set of arguments, en-
larging the current small block with new bindings, and clos-
ing the current big block with a pointer to case alternatives.
These are formally defined as follows.

Definition 5. The following operations with stack envi-
ronments are defined:

1. ((δ, m, 0) : ρ) + n
def
= ({}, 0, 0) : (δ, m + n, n) : ρ



Instructions Stack Node Heap Code

control
[ENTER] a : S node Γ[a 7→ (p, ws)] cs[p 7→ is]

=⇒ is S a Γ cs

[RETURNCON Cm
k ] p : S node Γ cs[p 7→ isi

n
]

=⇒ isk S node Γ cs

[RETURNCON Cm
k ] #a : S node Γ[a 7→ (pbh, as),

node 7→ (p, ws)] cs
=⇒ [RETURNCON Cm

k ] S node Γ[a 7→ (p, ws)] cs

ARGCHECK m : is ai
m : S node Γ cs

=⇒ is ai
m : S node Γ cs

ARGCHECK m : is ai
n : #a : S node Γ[a 7→ (pbh, ws)] cs n < m

=⇒ ARGCHECK m : is ai
n : S node Γ[a 7→ (pn+1

pap ,node : ai
n)] cs

heap
ALLOC m : is S node Γ cs (1)

=⇒ is am : S node Γ′ cs

BUILDCLS i p zi
n : is S node Γ cs (2)

=⇒ is S node Γ[S!i 7→ (p, ai
n)] cs

stack
BUILDENV zi

n : is S node Γ cs (2)
=⇒ is ai

n : S node Γ cs

PUSHALTS p : is S node Γ cs
=⇒ is p : S node Γ cs

UPDTMARK : is S node Γ[node 7→ (p, ws)] cs
=⇒ is #node : S node Γ[node 7→ (pbh, ws)] cs

SLIDE (nk, mk)
l
: is akj

nk : bkj
mk

l

: S node Γ cs

=⇒ is akj
nk

l
: S node Γ cs

(1) am is a pointer to a new closure with space for m free variables, and Γ′ is the resulting
heap after the allocation

(2) ai =

�
S!i if zi = (STACK , i)
nodeΓ!i if zi = (NODE , i)

Figure 8: The ISTG machine

2. ((δ, m, 0) : ρ)+({xi 7→ ji
n}, n)

def
= (δ∪{xi 7→ m + ji

n},
m+n, 0) : ρ

3. ((δ, m, 0) : ρ)++
def
= ({}, 0, 0) : (δ, m + 1,−1) : ρ

5.1 Translation schemes
Functions trE and trA respectively translate a FUN ex-

pression and a case alternative to a sequence of ISTG ma-
chine instructions; function trAs translates a set of alterna-
tives to a pointer to a vectored set of machine instruction
sequences in the code store; and function trB translates a
lambda form to a pointer to a machine instruction sequence
in the code store. The translation schemes are shown in
Figure 9.

The notation . . . & cs[p 7→ . . .] means that the corre-
sponding translation scheme has a side effect which consists
of creating a code sequence in the code store cs and pointing
it by the code pointer p.

Proposition 8. (static invariant) Given a closed expres-
sion e0 with different bound variables and an initial call
trE e0 ρ∅ {}, in all internal calls of the form trE e ρ η:

1. The stack environment has the form ρ = (δ, m, 0) : ρ′.
Moreover, there is no other block (δ′, m′, n) in ρ′ with
n = 0. Consequently, all environment operations in
the above translation are well defined.

2. All free variables of e are defined either in ρ or in η.
Moreover, dom ρ ∩ dom η = ∅.

3. The last instruction generated for e is ENTER. Con-
sequently, the main instruction sequence and all se-
quences corresponding to case alternatives and to non-
constructor closures, end in an ENTER.

Proof. (1) and (2) are proved by induction on the tree
structure of calls to trE ; (3) is proved by structural induc-
tion on FUN expressions.

In order to prove the correctness of the translation, we
only need to consider ISTG machine configurations of the
form (is, SI ,node, ΓI , cs) in which is is generated by a call
to trE for some expression e and environments ρ, η. We call
these stable configurations. We enrich then these configura-
tions with three additional components: the environments



trE (e xi
n) ρ η = [BUILDENV (ρ, η) xi

n
] ++

trE e (ρ + n) η

trE (case e of alts |xi
n

) ρ η = [BUILDENV zs,PUSHALTS p] ++ trE e ρ′++ (η − xs)

where p = trAs alts ρ′

ρ′ = ρ + ({xsj 7→ m− j + 1
m}, m)

xs = [x | x ← xi
n ∧ x ∈ dom η]

zs = [(node, η x) | x ← xs]
m = |xs |

trE (letrec xi = lf i |yij
mi

n
in e) ρ η = [ALLOC mn, . . . ,ALLOC m1] ++

[BUILDCLS (i− 1) pi zsi
n
] ++

trE e ρ′ η

where ρ′ = ρ + ({xi 7→ n− i + 1
n}, n)

pi = trB (lf i |yij
mi

), i ∈ {1..n}
zsi = (ρ′, η) yij

mi
, i ∈ {1..n}

trE x ρ η = [BUILDENV [(ρ, η) x],
SLIDE ((1, 0) : ms),
ENTER]

where ms = map (\( , m, n) → (n, m− n)) (takeWhile nn ρ)
nn ( , m,−1) = False
nn = True

trAs (alti
n
) ρ = p & cs[p 7→ trA alti ρ

n
]

trA (C xi
n → e) ρ = trE e ρ {xi 7→ i

n}

trB (Cn
k xi

n |xi
n

) = p & cs[p 7→ [RETURNCON Cn
k ]]

trB (λxi
l.e |yj

n

) = p & cs[p 7→ [ARGCHECK l] ++ trE e ρ η]

where ρ = [({xi 7→ l − i + 1
l}, l, 0)]

η = {yj 7→ j
n}

trB (e |yj
n

) = p & cs[p 7→ [UPDTMARK ] ++ trE e ρ∅ η]

where η = {yj 7→ j
n}

Figure 9: Translation schemes from STG-2 to ISTG

ρ and η used to generate is, and an environment stack Senv

containing a sequence of stack environments. The environ-
ments in Senv are in one to one correspondence with case
pointers stored in SI . Initially Senv is empty. Each time
an instruction PUSHALTS is executed (see trE definition
for case), the environment ρ′ the corresponding alterna-
tives are compiled with, is pushed onto stack Senv. Each
time a RETURNCON pops a case pointer, stack Senv is
also pop-ed. So, enriched ISTG configurations have the form
(is, ρ, η, SI , Senv ,node, ΓI , cs).

Definition 6. A STG-2 environment E is equivalent to an
ISTG environment defined by ρ, η, SI , ΓI and node, denoted
E ≡ (ρ, SI , η, ΓI ,node) if dom E ⊆ dom ρ ∪ dom η and

∀x ∈ dom E

�
E x = SI ! (ρ x) if x ∈ dom ρ
E x = nodeΓI ! (η x) if x ∈ dom η

Definition 7. A STG-2 stack S is equivalent to a triple
(ρ, SI , Senv ) of an ISTG enriched configuration, denoted S ≡
(ρ, SI , Senv ), if

1. Whenever ρ = (δ, m, 0) : ρ′, then SI = ai
m : S′I and

S ≡ (ρ′, S′I , Senv )

2. Whenever ρ = (δ, m, n) : ρ′, n > 0, then S = ai
n : S′,

SI = ai
n : bj

m−n
: S′I and S′ ≡ (ρ′, S′I , Senv )

3. Whenever ρ = (δ, m,−1) : ρ′, then S = (alts, E) : S′,
SI = palts : S′I , Senv = ρalts : S′env , palts = trAs alts ρalts ,
E ≡ (ρalts , S

′
I , , , ) and S′ ≡ (ρalts , S

′
I , S′env )

4. Whenever S = #a : S′ and SI = #a : S′I , then S′ ≡
(ρ, S′I , Senv )

5. Additionally, [ ] ≡ ({}, [ ], [ ])



Definition 8. A STG-2 heap Γ is equivalent to an ISTG
pair (ΓI , cs), denoted Γ ≡ (ΓI , cs), if for all p we have Γ[p 7→
(lf |xi

n

, E)] if and only if ΓI [p 7→ (q,ws)], cs[q 7→ is], is =

trB (lf |xi
n

) and ws = E xi
n
.

Definition 9. A STG-2 configuration is equivalent to an
ISTG enriched stable configuration, denoted (Γ, e, E, S) ≡
(is, ρ, η, SI , Senv,node, ΓI , cs) if

1. Γ ≡ (ΓI , cs)

2. is = trE e ρ η

3. E ≡ (ρ, SI , η, ΓI ,node)

4. S ≡ (ρ, SI , Senv )

Proposition 9. (dynamic invariant) Given a closed ex-
pression e0 with different bound variables and initial STG-
2 and ISTG configurations, respectively ({}, e0, {}, [ ]) and
(trE e0 ρ∅ {}, ρ∅, {}, [ ], [ ],⊥, {}, cs), where cs is the code
store generated by the whole translation of e0, then both ma-
chines evolve through equivalent configurations.

Proof. By induction on the number of transitions of
both machines. Only transitions between ISTG stable con-
figurations are considered.

Corollary 10. The translation given in Section 5.1 is
correct.

6. DIFFERENCES WITH THE ACTUAL STG
MACHINE

There are some differences between the machine transla-
tion presented in Section 5 and the actual code generated
by GHC. Some are just omissions, other are non-substantial
differences and some other are deeper ones.

In the first group it is the treatment of basic values, very
elaborated in GHC (see for example [3]) and completely ig-
nored here. We have preferred to concentrate our study in
the functional kernel of the machine but, of course, a formal
reasoning about this aspect is a clear continuation of our
work.

In the second group it is the optimization of update im-
plementation. In GHC, updates can be done either by indi-
rection or by closure creation, depending on whether there
is enough space or not in the old closure to do update in
place. This implies to keep closure size information some-
where. GHC keeps it in the so called info table, a static part
shared by all closures created from the same bind. This
table forces an additional indirection to access the closure
code. Our model has simplified these aspects. We under-
stand also that stack restructuring, as the one performed by
our SLIDE instruction, is not implemented in this way by
GHC. Apparently, stubbing of non used stack positions is
done instead. An efficiency study could show which imple-
mentation is better. The cost of our SLIDE instruction is
in O(n), being n the number of arguments to be preserved
in the stack when the current environment is discarded.

Perhaps the deeper difference between our derived ma-
chine and the actual STG is our insistence in that FUN ap-
plications should have the form e xi

n instead of x xi
n as it is

the case in the STG language. This decision is not justified
in the GHC papers and perhaps could have a noticeable neg-
ative impact in performance. In a lazy language, the func-
tional part of an application should be eagerly evaluated,
but GHC does it lazily. This implies constructing a number

of closures that will be immediately entered (and perhaps
updated afterwards), with a corresponding additional cost
both in space and time. Our translation avoids creating and
entering these closures. If the counter-argument were hav-
ing the possibility of sharing functional expressions, this is
always available in FUN since a variable is a particular case
of an expression. What we claim is that the normalization
process in the Core-to-STG translation should not introduce
unneeded sharing.

7. CONCLUSIONS
We have presented a stepwise derivation of a (well known)

abstract machine starting from Sestoft’s operational seman-
tics, going through several intermediate machines and arriv-
ing at an imperative machine very close to a conventional im-
perative language. This strategy of adding a small amount
of detail in each step has allowed us both to provide in-
sight on fundamental decisions underlying the STG design
and, perhaps more importantly, to be able to show the cor-
rectness of each refinement with respect to the previous one
and, consequently, the correctness of the whole derivation.
To our knowledge, this is the first time that formal transla-
tion schemes and a formal proof of correctness of the STG
to C translation has been done.

Our previous work [2] followed a different path: it showed
the soundness and completeness of a STG-like machine called
STG-1S (laying somewhere between machines STG-2 and
ISTG of this paper) with respect to Sestoft’s semantics.
The technique used was also different: a bisimulation be-
tween the STG-1S machine and Sestoft’s MARK-2 machine
was proved. We got the inspiration for the strategy followed
here from Mountjoy [5] and in Section 2 we have explained
the differences between his and our work. The previous ma-
chines of all these works, including STG-1 and STG-2 of this
paper, are very abstract in the sense that they deal directly
with functional expressions. The new machine ISTG intro-
duced here is a really low level machine dealing with raw
imperative instructions and pointers. Two contributions of
this paper have been to bridge this big gap by means of
the translations schemes and the proof of correctness of this
translation.

Our experience is that formal reasoning about even well
known products always reveals new details, give new insight,
makes good decisions more solid and provides trust in the
behavior of our programs.
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