
Chapter 4Parallelism Abstractions inEdenRita Loogen, Yolanda Ortega, Ricardo Pe~na,Ste�en Priebe, and Fernando Rubio1The parallel functional programming language Eden extends Haskell with ex-pressions to de�ne and instantiate process systems. These extensions allow alsothe easy implementation of skeletons as higher-order functions. Parallel pro-gramming is possible in Eden at two levels: The �rst level is the most abstractone and it is appropriate for building parallel applications at low e�ort on topof the prede�ned skeletons. At the lower level, the programmer instantiatesprocesses explicitly, being able to create new skeletons, and also to build appli-cations with irregular parallelism for which there is not an appropriate skeletonto apply. In this chapter, we present several skeletons covering a wide range ofparallel structures. For each skeleton, one or more implementations in Eden aregiven, together with their corresponding cost models. We also show examples ofapplication programming, including predicted and actual results on a Beowulf.4.1 IntroductionTwo important abstractions have contributed to create a reliable programmingmethodology for industrial-strength programs. These are functional abstrac-tion (which has received di�erent names in programming languages, such asprocedure, subroutine, function, etc), and data abstraction (also with di�erentnames such as abstract data type, object, package or simply module). In bothabstractions two di�erent pieces of information are distinguished:1Work partially supported by the spanish project TIC2000-0738, Spanish-British Acci�onIntegrada HB 1999-0102 and a German-British ARC cooperation funded by the GermanAcademic Exchange Service (DAAD). 1

� The speci�cation de�nes its external behaviour. It contains all the infor-mation needed by a potential user of the abstraction.� The implementation determines its e�ciency. In general, there can beseveral implementations for the same speci�cation.Several algorithmic schemes have been identi�ed to solve di�erent problem fam-ilies in sequential programming. For instance, there exist the greedy method,the dynamic programming method or the divide and conquer method. Analo-gously, parallel algorithms can be classi�ed into families, so that all members ofa family are solved by using the same scheme. The abstraction of this schemeis what we call an algorithmic skeleton, or simply a skeleton [Col89].Its speci�cation describes at least the values returned by the skeleton foreach possible input, i.e. its functional behaviour. But usually it also describesthe family of problems to which the skeleton is applicable. For instance, thereexists a parallel divide and conquer skeleton useful for problems for which afunction split (to divide a problem into subproblems), and a function combine(to combine the sub-results) exist. In fact the skeleton solves the same problemfamily as the sequential divide and conquer scheme. We take the position that,as part of the speci�cation, a sequential algorithm solving the family of problemsshould be provided. Frequently, this sequential algorithm is actually used bythe implementations in some of the parallel processes.Normally, a skeleton can be implemented in several di�erent ways. Imple-mentations may di�er in the process topology created, in the granularity of thetasks, in the load balancing strategy or in the target architecture used to runthe program. So, the implementation hides many details to the potential user,and also determines the e�ciency of the program.One of the main characteristics of skeletons is that it should be possible topredict the e�ciency of each implementation. This can be done by providing acost model together with each implementation. A cost model is just a formulastating the predicted parallel time of the algorithm [Ham00]. To build thisformula, the implementor has to consider all the activities which take place inthe critical path of the algorithm. This includes the initial sequential actionsneeded to put at work all the processors of the parallel machine, the maximum ofthe individual times needed by the processors, and the �nal sequential actions,which take place between �nishing the last subtask and delivering the �nalresult. Cost models will be parameterized by some constants that may dependeither on the problem to be solved, on the underlying parallel architecture, oron the runtime system (RTS) being used.For the functional programmer, a skeleton is nothing more than a polymor-phic higher-order function which can be applied with many di�erent types andparameters. Thus, programming with skeletons follows the same principle asprogramming with higher-order functions, that is the same principle used in anyabstraction: to de�ne each concept once and to reuse it many times.2

Eden [BLOP96, BLOMP97] is one of the few functional languages in whichskeletons can be both used and implemented. In other approaches, the cre-ation of new skeletons is considered as a system programming task, or even asa compiler construction task. Skeletons are implemented by using imperativelanguages and parallel libraries. Therefore, these systems o�er a closed collec-tion of skeletons which the application programmer can use, but without thepossibility of creating new ones, so that adding a new skeleton usually impliesa considerable e�ort.In Section 4.2 we introduce the features of Eden that are used in the skele-ton de�nitions in Section 4.3. Section 4.4 presents several example applica-tions which are parallelized using the skeletons. Runtime results show that theskeleton-based parallelization leads to reasonable speedups on a Beowulf cluster.Moreover, the actual runtime results correspond to the ones predicted by thecost models of the skeletons. The chapter �nishes with a discussion of relatedwork and conclusions.4.2 Eden's Main FeaturesEden [BLOP96, BLOMP97] extends the lazy functional language Haskell [PH99]by syntactic constructs for explicitly de�ning processes. Eden's process modelprovides direct control over process granularity, data distribution and commu-nication topology.4.2.1 Basic ConstructsA process abstraction expression process x -> e of type Process a b de�nesthe behaviour of a process having the formal parameter x::a as input and theexpression e::b as output. Process abstractions of type Process a b can becompared to functions of type a -> b, the main di�erence being that the former,when instantiated, are executed in parallel.A process instantiation uses the prede�ned in�x operator(#) :: (Transmissible a, Transmissible b) => Process a b -> a -> bto provide a process abstraction with actual input parameters. The contextTransmissible a ensures that functions for the transmission of values of typea are available.The evaluation of an expression (process x -> e1) # e2 leads to the dy-namic creation of a process together with its interconnecting communicationchannels. The instantiating or parent process will be responsible for evaluatingand sending e2 via an implicitly generated channel, while the new child processwill evaluate the application (\ x -> e1) e2 and return the result via anotherimplicitly generated channel. The instantiation protocol deserves some atten-tion: (1) Expression e1 together with its whole environment is copied, in thecurrent evaluation state, to a new processor, and the child process is createdthere to evaluate the expression (\ x -> e1) e2 where e2 must be remotely3

received. (2) Expression e2 is eagerly evaluated in the parent process. Theresulting full normal form data is communicated to the child process as its in-put argument. (3) The normal form of the value (\ x -> e1) e2 is sent backto the parent. For input or output tuples, independent concurrent threads arecreated to evaluate each component.Processes communicate via unidirectional channels which connect one writerto exactly one reader. Once a process is running, only fully evaluated data ob-jects are communicated. The only exceptions are lists, which are transmitted ina stream-like fashion, i.e. element by element. Each list element is �rst evaluatedto full normal form and then transmitted. Concurrent threads trying to accessinput which is not available yet, are temporarily suspended. This is the onlyway in which Eden processes synchronize.Example 4.1 Replacing the function application in the map function:map :: (a -> b) -> [a] -> [b]map f xs = [f x | x <- xs]by a process instantiation, leads to a simple parallel map skeleton, in which adi�erent process is created for each element of the input list:map_par :: (Transmissible a, Transmissible b) => (a -> b) -> [a] -> [b]map_par f xs = [pf # x | x <- xs] `using` spinewhere pf = process x -> f xThe process abstraction pf wraps the function application (f x). It determinesthat the input parameter x as well as the result value will be transmitted onchannels. Therefore both types a and bmust belong to the class Transmissible.The spine strategy is used to eagerly evaluate the spine of the processinstantiation list. In this way all processes are immediately created. Strate-gies [THLP98] are functions which control the evaluation of expressions withoutproducing a result value. They are applied by means of the function using, that�rst applies the strategy to the input, and then returns the value of the input:using x s = s x `seq` xspine :: [a] -> ()spine [] = ()spine (_:xs) = spine xsmap par is an essential primitive skeleton used to eagerly create a set of inde-pendent processes. More sophisticated parallel implementations of map, built ontop of it, will be presented in the following section (see also [KLPR01, PR01])./Process abstractions in Eden are not just annotations but �rst class val-ues which can be manipulated by the programmer (i.e. communicated throughchannels, stored in data structures, and so on). This facilitates the de�nition ofskeletons as higher order functions. Process instantiations dynamically create4

processes. Thus, in general, the number of processes cannot be determined atcompile time.Eden is based on Haskell, a non-strict functional language. Non-strictness,implemented by using lazy evaluation of expressions, is a key point in our ap-proach. For instance, in Eden it is possible to create circular topologies ofprocesses connected by lists. In an eager language this will simply lead to adeadlock, as a process cannot completely evaluate its output because it willprobably need its whole input, which is still being produced by another process,which in turn will demand its whole input, and so on. Another interesting fea-ture of non-strictness in our Eden programs is that they can be automaticallyconverted to a working sequential program in Haskell just by replacing processesby functions (a small syntactic change as seen above). From Haskell's point ofview, our process topologies will then simply look like a set of mutually recursivefunctions.Lazy evaluation is changed to eager evaluation in two cases: processes areeagerly instantiated, and instantiated processes produce their output even if itis not demanded. These modi�cations aim at increasing the parallelism degreeand at speeding up the distribution of the computation. In general, a processis implemented by several threads concurrently running in the same processor,so that di�erent values can be produced independently. The concept of a vir-tually shared global graph does not exist. Each process evaluates its outputsautonomously.4.2.2 Many-to-one CommunicationMany-to-one communication is an essential feature for some parallel applica-tions, but it spoils the purity of functional languages, as it introduces non-determinism. In Eden, the prede�ned process abstractionmerge :: Transmissible a => Process [[a]] [a]is used to instantiate processes which fairly merge lists of input streams intosingle (non-deterministic) output streams. The incoming values are passed tothe output stream in the order in which they arrive. In this way merge pro-vides many-to-one communication. It can pro�tably be used to react quickly torequests coming in an unpredictable order from a set of processes.Even though the skeletons presented are deterministic, some of them are re-quired to immediately react to requests for work coming from a group of workerprocesses. An instantiation of merge will propagate these requests as they arebeing produced. Functional purity can still be preserved in most portions ofan Eden program. A non-determinism analysis [PS01] detects the expressionswhich are sure to be deterministic even in presence of merge instantiations.4.2.3 Dynamic channelsAn Eden process may generate a new dynamic input channel and send a messagecontaining the channel's name to another process. The receiving process may5

then either use the name to return some information to the sender process(receive and use), or pass the channel name further on to another process (receiveand pass). Both possibilities exclude each other, and a runtime error occurs ifnot appropriately used.Eden introduces a new unary type constructor ChanName for the names ofdynamically created channels. Moreover, it also adds a new expressionnew (ch name, chan) eThis declares a new channel name ch name as reference to the new input channelchan, which represents future input. The scope of both is the body expressione. The name should be sent to another process to establish the communication.A process receiving a channel name ch name, and wanting to reply throughit, uses an expression ch name !* e1 par e2 . Before e2 is evaluated, a newconcurrent thread for the evaluation of e1 is generated, whose normal form resultis transmitted via the dynamic channel. The result of the overall expression ise2, while the communication through the dynamic channel is a side e�ect.Dynamic channels are a non-functional feature, and its denotational meaningis a di�cult issue, as it needs to take into account the global state of the processsystem. In most situations |in particular in all the skeletons presented in thischapter| it is possible to create the same topologies without using dynamicchannels, the main di�erence being that some channels will connect the intendedprocesses through intermediate threads in other processes. By using dynamicchannels those will be direct connections. In this sense, in this paper this featurecan be seen as an optimization using a low-level construct provided by thelanguage rather than as a radically new concept.4.2.4 Eden ImplementationEden's compiler2 has been developed by extending the Glasgow Haskell Com-piler (GHC) [PHH+93, Pey96], in order to reuse its e�ciency and portability.Eden's runtime system (RTS) is an implementation of the DREAM abstract ma-chine [BKL+98b] on top of a message passing library. In the current compiler,both PVM [GBDJ94] and MPI [MPI94] can be used. Therefore, the compilercan be ported to any architecture where GHC and either PVM or MPI areavailable.Eden compiler has been developed by modifying two parts of GHC. Firstly,the front-end has been extended to deal with the new Eden constructions. Themodi�cation is done in such a way that the extra constructions are hidden afterthe parser. The idea is that the constructions are translated into applications ofprede�ned Eden functions, that will be used to connect GHC with Eden RTS.By doing so, it is not necessary to modify the compilation process of GHC,as its internal constructions are still the same. Eden extensions only appearagain at runtime, when its prede�ned functions are invoked. Eden RTS extendsGHC RTS in order to implement the DREAM abstract machine, and this is2Freely available at http://www.mathematik.uni-marburg.de/inf/eden6

done by modifying GUM, the implementation of GpH [THJ+96]. See [BKL98a,KOMP99] for more details about Eden implementation.Eden provides no placement annotations. However, Eden's RTS supportstwo modes to map processes to processors, which can be chosen by the user foreach execution. Round-robin mode: If several processes are instantiated from aparticular processor p, they are mapped to consecutive processors starting withthe one numbered one more than p. Random mode: Each processor maps in-stantiated processes to randomly chosen processors. Notice that the round-robinmode allows the programmer to control somehow the mapping of processes, ashe/she can achieve that di�erent processes will be placed on di�erent processors.The number of processors is provided by the integer constant noPe. It can beused to adapt the number of processes to the number of available processors.4.3 Skeletons in EdenSkeletons and alternative parallel implementations of them can easily be de-�ned in a higher-order functional language with explicit parallelism like Eden.Describing both the functional speci�cation and the parallel implementationof a skeleton in the same language context has several advantages. First, itconstitutes a good basis for formal reasoning and correctness proofs. Second,it provides much
exibility, as skeleton implementations can easily be adaptedto special cases, and if necessary, new skeletons can even be introduced bythe programmer himself. In this section we present many typical data-parallel,task-parallel and systolic skeletons in Eden, and discuss alternative parallel im-plementations of these skeletons together with appropriate cost models.4.3.1 Cost ModelsThe cost models presented in this section are an adaptation of classical costmodels appearing in the literature (see e.g. [Ham00]). In Eden, the parallelcomputation starts and �nishes always in the main process, from which otherprocesses may be instantiated. In some cases, all the child processes are createdfrom the same parent process. In other cases, a child process creates anotherchild process, which in turn creates others, and so on. The cost models belowtake into account the creation and termination of processes in the critical path,i.e. the processes created from the beginning of the main process until all pro-cessors are computing in parallel, and the activities from the end of the lastchild until the main process terminates.We will use the parameters shown in Figure 4.1 and combine some of theminto higher-level parameters. The local costs, i.e. CPU time, to pack or tounpack a message with nw words for sending or receiving, respectively, is givenby time(nw) = �+ � � nw : 7

Problem dependent parametersN size of the inputtf sequential CPU time for function fnwI number of words of input message going to a childnwO number of words of output message coming from a childRTS dependent parameterstcreate CPU time in a parent processor to create a child processt# CPU time in a child processor to set up the child processArchitecture dependent parametersP number of processors� latency of a message, from start sending to start receiving� start-up �xed CPU cost for sending or receiving a message� per-word CPU cost for sending or receiving a messageFigure 4.1: Parameters of the cost modelsAs we do not distinguish between packing and unpacking messages, the CPUtime for packing or unpacking a message going to a child process istunpackI = tpackI = time(nwI)In the same way, the time for packing or unpacking an output coming from achild istunpackO = tpackO = time(nwO)Example 4.2 In the map par skeleton de�ned in Section 4.2 a process is createdfor each element in the list. If the number of tasks is greater than the numberof processors, several tasks will be evaluated in each processor. For the costmodel, we assume a round-robin distribution of processes onto processors anda uniform granularity of tasks:tmap par = Linit + tprocessor + L�nalLinit = N(tcreate + tpackI) + �L�nal = � + tunpackOtprocessor = dNP e(t# + tunpackI + tf + tpackO)The �rst formula describes the critical path determining the parallel time. Thispath consists of a startup phase taking time Linit , an intermediate phase withtime tprocessor where all processes work in parallel, and a �nal shutdown phasewith time L�nal . Before the last worker starts computing, P processes must becreated and P messages must be packed in the parent. The remaining N � Pprocess creations and message packing are interleaved in the same processoras the last worker, i.e. they are in the critical path, so we have attributedthese costs to Linit . After the last worker �nishes, an output message must�rst arrive to the parent (hence the � latency) and then be unpacked. Themost heavily loaded processor will get dNP e tasks. We are assuming that theremaining manager costs (i.e. the reception of the N � 1 remaining messages)are outside the critical path. /8

4.3.2 Data Parallel SkeletonsData-parallel skeletons de�ne global operations over large data structures, wherethe individual operations on single elements or substructures of the data struc-ture are performed in parallel. The simplest data-parallel skeleton is map whichapplies the same function f on di�erent elements of a distributed data struc-ture, in our case a list. Another skeleton we will consider, is map and reduce,a combination of a map and a fold.In a data-parallel language, the sequential code of each process is assumed tobe stored at every processor, and the global data already distributed accordingto the programmer's declaration for the data structure. So, the programmer isnot concerned with process creation and/or communication. These take placeimplicitly when needed by the algorithm. In Eden, the computation starts in asingle process and the programmer is responsible for instantiating processes andfor specifying the distribution of data between them. This is so because Edenis not a data-parallel, but a task-parallel language. Therefore, the followingskeletons can be seen as an approximation of how to express data parallelism ina task-parallel language.MapIn most parallel implementations of the well-known map function, the input listis considered as a task queue that can be processed using several processorelements (PEs). In Section 4.2 we have already shown a straightforward par-allelization of map, map par, which creates a new process for each task. Thissimple approach is not always well suited, especially in the presence of many�ne-grained or irregular tasks. Alternative parallel implementations of map usea �xed number of worker processes, each processing a tasks subset.Farm Implementation. The main process of the farm implementation cre-ates as many processes as processors are available, distributes the tasks evenlyamongst the processes, and collects the results. Each process applies the pa-rameter function to each task it receives, and sends the results back to the mainprocess. The number of workers np, and the distribution and collection func-tions unshuffle and shuffle are parameters of farm. The map par skeletonis used to create as many processes as the number of task lists into which theoriginal list is distributed.map_farm :: (Transmissible a,Transmissible b) =>(a->b) -> [a] -> [b]map_farm = farm noPe unshuffle shufflefarm :: (Transmissible a, Transmissible b) =>Int -> (Int->[a]->[[a]]) -> ([[b]]->[b]) -> (a->b) -> [a] -> [b]farm np unshuffle shuffle f tasks= shuffle (map_par (map f) (unshuffle np tasks))9

noPe is a constant giving the number of available processors. Di�erent strategiesto split the work into the di�erent processes can be used provided that, for everylist xs, (shuffle . unshuffle n) xs == xs holds.The farm implementation is appropriate when task granularity is uniform,and when an even distribution of tasks amongst all the processors can beachieved. In order to place the processes on di�erent processors, the round-robin mode of the RTS should be used. Moreover, to improve the load balance,the length of the task list should be much higher than the number of availableprocessors, so that it is not relevant the fact that one processor may receive onetask in excess of those of other processors. Alternatively, the number of tasksshould be a multiple of the number of processors.In the cost model for map farm the costs of shu�ing and unshu�ing areadded and only one process is created per processor:tmap farm = Linit + tworker + L�nalLinit = P (tcreate + tpackI + tunshu�e1) + �L�nal = � + tunpackO + tshu�e1tworker = t# + dNP e(tunpackI + tf + tpackO)tunshu�e1 is the time needed to distribute one element of the task list. It ismultiplied by P, because a task must be delivered for each worker. We areassuming that the CPU time not shown in the parent (i.e. unshu�ing andshu�ing the rest of the tasks) is small and does not a�ect the critical path. Ifthis were not the case, we would assign a separate processor to the main processand these times will then be outside the critical path. The price to be paid isdevoting a single processor to the parent. For that purpose, we introduce thefollowing variants of the map farm skeleton:map_farm_1 :: (Transmissible a,Transmissible b) =>(a->b) -> [a] -> [b]map_farm_1 = farm (noPe-1) shuffle unshufflemap_farm_thr :: (Transmissible a,Transmissible b) =>Int -> (a->b) -> [a] -> [b]map_farm_thr thr = if noPe > thr then map_farm_1 else map_farmmap farm 1 devotes a separate processor to the main process, while map farm thrbehaves like map farm or map farm 1 depending on a threshold parameter.These variants can be de�ned in a similar way for all the skeletons. In some ofthe algorithms presented in Section 4.4 the threshold variant of the skeletonshas been used.Self-service Farm Implementation. Sometimes duplicating work helps re-ducing the total execution time, as communications can be reduced a lot. In themap case, when the evaluation of the task list is cheaper than communicatingthe evaluated list, it is better to allow the workers to evaluate the list of taskson their own and to select their part of it. This can be done by providing theworkers with parameters instead of input channels:10

ssf :: Transmissible b =>Int -> (Int->[a]->[[a]]) -> ([[b]]->[b]) -> (a->b) -> [a] -> [b]ssf np shuffle unshuffle f tasks= shuffle [(worker f ts) # () | ts <- unshuffle np tasks]where worker f tasks = process () -> map f tasksThe di�erence between the cost model of map farm and the one of map ssf isthat now tpackI and tunpackI disappear, and that the cost for unshu�ing thetasks is attributed to the workers:tmap ssf = Linit + tworker + L�nalLinit = Ptcreate + �L�nal = � + tunpackO + tshu�e1tworker = tunshu�edNP e + t# + dNP e(tf + tpackO)Replicated Workers Implementation. The load balance obtained usingthe farm or self-service schemes can be poor in three cases: (1) When thegranularity of the tasks is not uniform; (2) when the processors' architecture isirregular; and (3) when the programs share CPU time with other programs inthe same processors.In all these three situations distributing work on demand helps to improvesubstantially the load balance. A new task is assigned to a process only whenit has �nished its previous task. This idea gives rise to the replicated workersskeleton [KPR01]. Initially, the manager assigns one or more tasks to each ofthe workers. By assigning several tasks, idle time between tasks is minimized.Each time a worker �nishes a task, it sends an acknowledgment message to themanager including the result, and then a new task (if any is available) is assignedto that process. The computation �nishes when the manager has received allthe results.The programmer cannot predict in advance the order in which processes aregoing to �nish their works, as this depends on runtime issues. By using theprocess merge, acknowledgments from di�erent processes can be received bythe manager in the order in which they arrive. Thus, if each acknowledgmentcontains the identity of the sender process, the list of merged results can bescrutinized to know who has sent the �rst message, and a new task can beassigned to it. Notice that this approach can not be used in a purely functionallanguage, as process merge is not functional (see Section 4.2.2).The skeleton receives as input parameters (1) the number of worker processesto be used; (2) the size of workers' prefetching bu�er; (3) the worker function;and (4) the list of tasks.rw :: (Transmissible a,Transmissible b) =>Int -> Int -> (a -> b) -> [a] -> [b]rw np prefetch f tasks = results whereresults = sortMerge outsChildrenoutsChildren = [(worker f i) # inputs |(i,inputs) <- zip [0..np-1] inputss]11

inputss = distribute tasksAndIds(initReqs ++ (map owner unordResult))tasksAndIds = zip [1..] tasksinitReqs = concat (replicate prefetch [0..np-1])unordResult = merge # outsChildrendistribute [] _ = replicate np []distribute (e:es) (i:is) = insert i e (distribute es is)where insert 0 e ~(x:xs) = (e:x):xsinsert (n+1) e ~(x:xs) = x:(insert n e xs)data (Transmissible b) => ACK b = ACK Int Int bworker :: (Transmissible a, Transmissible b) =>(a->b) -> Int -> Process [(Int,a)] [ACK b]worker f i = process ts -> map f' tswhere f' (id_t,t) = ACK i id_t (f t)Notice that the output of the list of workers (outsChildren) is used in twodi�erent ways: (i) merge is applied to it in order to obtain a list unordResultcontaining the order in which the results are generated, so that it can be used bydistribute to distribute a new task to each processor as soon as it �nishes itsprevious tasks; and (ii) it is used to obtain the �nal result by applying sortMergeto it, where sortMerge is a simple Haskell function not shown which merges theworkers lists (each of them already sorted) producing a single list sorted by taskidentity. For this reason, the skeleton is completely deterministic seen from theoutside. In fact, ignoring the �rst two parameters, its semantics is that of map.In order to implement map, a worker is created for every processor, and a prefetchparameter of 2 is used, as this value uses to be the best one in general. Thereason is that, with a smaller value communications and computations cannotoverlap, and with bigger values the load balance could be worse, as there aremore tasks not distributed on demand.map_rw :: (Transmissible a,Transmissible b) => (a->b) -> [a] -> [b]map_rw = rw noPe 2The cost model for map rw is the following:tmap rw = Linit + tworker + L�nalLinit = P (tcreate + tpackI + tdistribute1) + �L�nal = � + tunpackO + tsortMerge1tworker = t# + NP (tunpackI + tcomp + tpackO)tcomp = 1N PNi=1 tfiThe considerations made for the map farm cost model are also applicable here.In the formula, tfi represents the sequential CPU time for function f whenapplied to task i. In tdistribute1 we consider accumulated the previous costs ofzip, concat and replicate functions for producing one element. Notice thatthe ceiling operation has disappeared from NP . We are assuming a perfect loadbalance, and it can be considered that every worker receives the exact averagenumber of tasks, each one with an average computing cost tcomp .12

Fixed Shared Data Structures. When there exists a �xed data structurethat has to be shared by all the tasks, it does not make sense to send such astructure each time a new task is released. Instead, it should be sent only once toeach process, and all the tasks of the same process should share it. This cannotbe done with the implementations presented so far, but the solution is quitesimple: the new implementations need an extra parameter (the shared data)that is sent to the workers through an independent channel. In the case of thereplicated workers the implementation only requires the following modi�cation:rw_FD :: (Transmissible a,Transmissible b, Transmissible fixed) =>Int -> Int -> fixed -> (fixed -> a -> b) -> [a] -> [b]rw_FD np prefetch fixed f tasks = results whereoutsChildren = [(worker_FD f i) # (fixed,inputs) |(i,inputs) <- zip [0..np-1] inputss]...worker_FD :: (Transmissible a, Transmissible b, Transmissible fixed) =>(fixed -> a -> b) -> Int -> Process (fixed,[(Int,a)]) [ACK b]worker_FD f i = process (fixed,ts) -> map f' tswhere f' (id_t,t) = ACK i id_t (f fixed t)and these modi�cations are analogous for farm. The only di�erence with rwis that now it is necessary to have an extra parameter for the �xed structure,and it has to be used appropriately. The di�erence in the cost models is thatthe workers have now an extra cost unpacking the shared data, while the costof packing it P times has to be added to Linit . The advantage is that now thecost associated to tpackI and tunpackI will be smaller, as the tasks are smallerbecause the full �xed data structure is not sent with each task.Map and ReduceThe sequential speci�cation of this classical scheme is a combination of a mapand a fold function:mr :: (a -> b) -> (b -> b -> b) -> b -> [a] -> bmr f g e tasks = foldl g e (map f tasks)where the �rst parameter is the function f to be applied by the map, whilethe second is a binary commutative and associative function g with a neutralelement e.Farm Implementation. In a straightforward approach this scheme could beparallelized by �rst applying in parallel the map step, and then folding the re-sults, thereby using the strict variant foldl' of fold. More parallelism and lesscommunication can be achieved, because the folding parameter g is an associa-tive and commutative function with neutral element e. The results computed ineach processor can be folded together locally before the global folding is done,i.e. the folding step is also parallelized, and the communications are reduced, asonly one element is returned by each worker, instead of a sublist.13

mr_PM :: (Transmissible a, Transmissible b) =>Int -> (Int -> [a] -> [[a]]) ->(a -> b) -> (b -> b -> b) -> b -> [a] -> bmr_PM np unshuffle f g e tasks = foldl' g e resultswhere results = [(worker_PM f g e) # mtasks| mtasks <- unshuffle np tasks] `using` spineworker_PM f g e = process tasks -> foldl' g e (map f tasks)Notice that an unshuffle function is provided, but not the correspondingshuffle: due to the associative and commutative properties of the parameterfunction g, the order in which the results are combined does not matter.Self-service Implementation. In many situations (see e.g. Section 4.4.2) itcan be done even better in case the list of tasks can be easily generated by eachworker. In those cases, the self-service approach can be used. Thus, each workercan select its tasks, so that the communications are reduced:mr_SSI :: Transmissible b => Int -> (Int -> [a] -> [[a]]) ->(a->b) -> (b->b->b) -> b -> [a] -> bmr_SSI np unshuffle f g e tasks = foldl' g e resultswhere results = [(worker f g e mtasks) # ()| mtasks <- unshuffle np tasks] `using` spineworker f g e tasks = process () -> foldl' g e (map f tasks)As in the map case, the number of processes depends on the number of processorsavailable. A prede�ned unshuffle function is provided to distribute the inputsin a round-robin fashion:map_reduce_ssi :: Transmissible b => (a->b) -> (b->b->b) -> b -> [a] -> bmap_reduce_ssi = mr_SSI noPe unshuffleunshuffle :: Int -> [a] -> [[a]]unshuffle n xs = [takeEach n (drop i xs) | i <- [0..n-1]]where takeEach :: Int -> [a] -> [a]takeEach n [] = []takeEach n (x:xs) = x : takeEach n (drop (n-1) xs)The cost model for map reduce ssi is the following:tmap reduce ssi = Linit + tworker + L�nalLinit = Ptcreate + �L�nal = � + tunpackO + tfoldlPtworker = t# + textract + dNP e(tf + tpackO) + tfolddNP e4.3.3 Task Parallel SkeletonsIn contrast to data-parallel skeletons where the source of parallelism is the dis-tribution of data between processors and the application of the same operationto all portions of the data, here the source of parallelism is the decomposition14

of a task into di�erent subtasks which can be done in parallel. These subtasksneed not be identical.The �rst skeleton we describe in this section, divide and conquer, is theparallel counterpart of the well-known sequential scheme. The parallelism comesfrom the fact that the di�erent subtasks into which a given task is split, canbe solved in parallel. In the second skeleton, the pipeline, di�erent stages of asequential computation can be done in parallel if they work on di�erent elementsof a continuous stream of data.Divide and ConquerThe sequential speci�cation of this scheme is:dc :: (a -> Bool) -> (a -> b) -> (a -> [a]) -> (a -> [b] -> b) -> a -> bdc trivial solve split combine x| trivial x = solve x| otherwise = combine x childrenwhere children = map (dc trivial solve split combine) (split x)Notice that the resulting call tree may be non-homogeneous, and that trivialsolutions may appear at any level of the tree.Na��ve Implementation. The easiest way to parallelize the dc scheme is toreplace map by map par. The following implementation uses this approach, butstops the parallel unfolding at a given level d. A dynamic tree of processes iscreated with each process connected to its parent. The integer parameter d de-termines the maximum level after which no more child processes are generated,and the sequential version is used instead. The implementation is as follows:dc_par :: (Transmissible a, Transmissible b) =>Int -> (a->Bool) -> (a -> b) -> (a -> [a]) ->(a -> [b] -> b) -> a -> bdc_par 0 trivial solve split combine = dc trivial solve split combinedc_par d trivial solve split combine x| trivial x = solve x| otherwise = combine x cwhere children = map_par (dc_par (d-1) trivial solvesplit combine) (split x)Notice that in this implementation there is no single manager process, as it hap-pened in previous skeletons, because every child is a parent process of the nextprocess level. The cost model for this implementation should use a distributionfunction of processes into processors and another distribution function of gran-ularities into processes. The �rst distribution is known, as it only depends onthe RTS, but the second one depends on the concrete problem. Thus, the costmodel should be able to work with any distribution function. Unfortunately,this is a hard problem in the general case, and the predictions that could beobtained would not be very accurate. 15

Farm and Replicated Workers Implementations. These implementa-tions use the farm and rw implementations of map, in order to have a bettercontrol over process granularity and distribution, and to achieve a better loadbalance. Notice that, by using rw the load balance will be improved, even ifthe granularities of the di�erent tasks are di�erent. Also, the process creationoverhead will be decreased, as only one process per processor will be created.The original task is split up to a given depth and, a subtask is created for everysubtree at this depth. The list of subtasks is given to a map farm (or bettera map rw) skeleton in which the function of the workers is just the sequentialalgorithm. In order to be able to appropriately combine the results returnedby the parallel processes, an explicit tree of arguments must be generated whensplitting the initial task. We only present the dc rw skeleton. The correspondingdc farm skeleton can be obtained by replacing map rw by map farm. FunctionsgenerateTasks and combineTop are simple Haskell de�nitions not shown.dc_rw :: (Transmissible a,Transmissible b) => Int ->(a ->Bool) -> (a ->b) -> (a ->[a]) -> (a ->[b] ->b) -> a -> bdc_rw d trivial solve split combine x= combineTop combine levels resultswhere (tasks,levels) = generateTasks d trivial split xresults = map_rw thr (dc trivial solve split combine) tasksdata Tree a = Node a [Tree a]generateTasks :: Int -> (a -> Bool) -> (a -> [a]) -> a -> ([a], Tree a)combineTop :: (a -> [b] -> b) -> (Tree a) -> [b] -> bThe cost models for these implementations of dc are mainly those of map rwand map farm (see Section 4.3.2), adding the overheads of creating tasks andcombining results in the parent process. To use the models, we must know thenumber N of tasks generated and the average computation time tcomp, whichcan be easily obtained from the sequential time. In Section 4.4.3 both dc parand dc rw are used and compared for a typical divide and conquer algorithm.PipelineA pipeline consists of a list of stages, where each stage applies a di�erent functionto the results obtained in the previous stage. This can be expressed by meansof a folding function:pipe :: [[a] -> [a]] -> [a] -> [a]pipe = foldl1 (flip (.))In order to extract parallelism, we have forced in the type that each functionmust consume and produce a list.Implementation. A na��ve parallelization of this scheme instantiates a di�er-ent process to evaluate each of the pipeline stages. This can be expressed inEden in several ways. For instance, in the following one, each process in thepipe creates its successor: 16

main ...
main ...Figure 4.2: Topology generated with pipe naive (left), and the desired pipelineusing pipeD (right)pipe_naive :: Transmissible a => [[a]->[a]] -> [a] -> [a]pipe_naive fs xs = (ppipe fs) # xsppipe :: Transmissible a => [[a]->[a]] -> Process [a] [a]ppipe [f] = process xs -> f xsppipe (f:fs) = process xs -> (ppipe fs) # (f xs)However, this de�nition has a subtle problem: It does not achieve the desiredtopology because the last process of the pipe cannot send the values directlyto the main process, as topologies in Eden are hierarchical by default (see Fig-ure 4.2(left)). The solution is the use of Eden's dynamic channels facility (seeSection 4.2) to establish a direct data connection between the last and the mainprocess. The main process creates a dynamic channel that will be used by thelast process for sending the �nal values. Intermediate processes just forward thename of that channel to the next process. The created topology is then thatof Figure 4.2(right). The similarities between both versions are remarkable. Infact, in [PRS01] we give a method that, given as speci�cation a hierarchical pro-gram using only process abstractions and instantiations, derives non-hierarchicalimplementations using dynamic channels.pipeD :: Transmissible a => [[a]->[a]] -> [a] -> [a]pipeD [f] xs = process xs -> f xspipeD fs xs = new (cn,c) let something = (ppipeD fs) # (xs,cn) in cppipeD :: Transmissible a => [[a]->[a]] -> Process ([a], ChanName [a]) ()ppipeD [f] = process (xs,cn) -> cn !* (f xs) par ()ppipeD (f:fs) = process (xs,cn) -> (ppipeD fs) # (f xs,cn)The cost model for pipeD is the following:tpipe naive = Linit + tworker + L�nalLinit = F (tcreate + t# + tpackI + �)L�nal = � + tunpackOtworker = dFP eN(tunpackI +maxftcompigFi=1 + tpackO)where F is the number of functions in the pipe, N the length of the input listand tcompi the cost of function fi for processing a single element. We assumeF > P and the round-robin mode for the RTS.17

4.3.4 Systolic SkeletonsSystolic programs are those in which processes alternate parallel computationand global synchronization steps. Depending on the concrete problems, they canbe classi�ed as data parallel or task parallel. We �rst present the iterUntilskeleton, that iterates a parallel computation until a convergence condition ismet, and then the torus and ring skeletons, in which processes communicaterespectively using a torus or a ring topology. In these skeletons, the sequentialspeci�cation is the same program as the parallel one, replacing the Eden runtimevalue noPe by 1.Iterate UntilThis topology is appropriate for parallel algorithms in which a manager iteratesuntil some convergence condition is met. At each iteration, a piece of workis given to each of a set of identical worker processes and a result is collectedfrom each of them. There are as many workers as processors. The di�erencewith a farm or a rw skeleton is that the tasks sent at each iteration dependon the results of the previous one. Thus, a new iteration cannot start untilthe whole previous iteration has �nished. A typical example of this kind ofparallel algorithms is solving linear systems by the conjugate gradient or theJacobi relaxation methods [Qui94].The manager is initialized with data of type inp (the problem input) and amanager local state of type ml. Each worker is initialized with data of type wl(worker local state) and one initial task of type t. At each iteration, each workercomputes a sub-result of type sr which is transmitted to the manager, and anew local state which is used for its next computation. The manager combinesthe sub-results and, either produces a new set of tasks and a new local managerstate, or it terminates with a result of type r. The Eden skeleton receives thefollowing parameters:� A split function to be used by the manager in order to compute theinitial state and the initial task of each worker, and its own local state. Itreceives an integer telling into how many pieces the input should be split.� The function wf to be used by the workers: given a local worker state anda task, it generates a sub-result and a new local state for the next round.� The function comb to be used by the manager to combine the sub-resultsof the workers: it produces either the �nal result or a new list of tasks anda new local manager state for the next round.� The input data of the problem, of type inp.The Eden source code is the following:18

iterUntil :: (Transmissible wl, Transmissible t, Transmissible sr) =>(inp -> Int -> ([wl],[t],ml)) -> -- split function(wl -> t -> (sr, wl)) -> -- worker function(ml -> [sr] -> Either r ([t],ml)) -> -- combine functioninp -> riterUntil split wf comb x = resultwhere (result, moretaskss) = manager comb ml (transpose' srss)srss = map_par (worker wf) (zip wlocals taskss)taskss = transpose' (initials : moretaskss)(wlocals,initials,ml) = split x noPemanager :: (ml -> [sr] -> Either r ([t],ml)) -> ml -> [[sr]] -> (r, [[t]])manager comb ml (srs : srss) = case comb ml srs ofLeft res -> (res, [])Right (ts,ml') -> let (res',tss) = manager comb ml' srssin (res',ts:tss)worker :: (wl -> t -> (sr, wl)) -> (wl, [t]) -> [sr]worker wf (local, []) = []worker wf (local,t:ts) = sr : worker wf (local',ts)where (sr, local') = wf local ttranspose' = foldr (mzipWith' (:)) (repeat [])mzipWith' f (x:xs) ~(y:ys) = f x ymzipWith' f _ _ = []The cost model is the following:titerUntil = Linit + I tworker + (I � 1)tparent + L�nalLinit = P (tcreate + tpackI) + � + t#L�nal = P tunpackO + tcombinetparent = P tunpackO + tcombine + P tpackI + �tworker = tunpackI + tcompW + tpackO + �where now the computing costs of the workers and of the parent strictly alternatein the critical path. Parameter I is the number of iterations of the algorithm.TorusA torus is a well-known two-dimensional topology in which each process is con-nected to its four neighbors. The �rst and last processes of each row and columnare considered neighbors. In addition, each node has two extra connections tosend and receive values to/from the parent. At each round, every worker re-ceives messages from its left and upper neighbors, computes, and then sendsmessages to its right and lower neighbors. Eden's implementation uses listsinstead of synchronization barriers to simulate rounds. It also uses dynamicchannels to provide direct connections between workers. The torus functionde�ned below creates the desired toroidal topology by properly connecting the19

inputs and outputs of the di�erent ptorus processes. Each process receives aninput from the parent, and two channel names to be used to send values to itssiblings, and produces an output to the parent and two channel names to beused to receive inputs from its siblings. The whole source code of the skeletonis the following:torus :: (Transmissible a,Transmissible b,Transmissible c,Transmissible d)=> Int -> (Int -> c -> [[c]]) -> ([[d]] -> d) ->((c,[a],[b]) -> (d,[a],[b])) -> c -> dtorus np dist comb f input = comb outssToParent wheretoChildren = dist np inputoutss = [[(ptorus f) # outAB | outAB <- outs'] | outs' <- outss'](outssToParent,outssA,outssB) = unzip3 (map unzip3 outss)outssA' = mzipWith (:) nrows (map last outssA) (map init outssA)outssB' = last outssB : init outssBoutss' = mzipWith3 mzip3 toChildren outssA' outssB'nrows = length toChildren-- each individual process of the torusptorus ::(Transmissible a,Transmissible b,Transmissible c,Transmissible d)=> ((c,[a],[b]) -> (d,[a],[b])) ->Process (c,ChanName [a],ChanName [b])(d,ChanName [a],ChanName [b])ptorus f = process (fromParent,outChanA,outChanB) -> outwhere out= new (inChanA, inA) new (inChanB, inB)let (toParent,outA,outB) = f (fromParent,inA,inB)in outChanA !* outA par outChanB !* outB par(toParent,inChanA,inChanB)mzip3 (x:xs) ~(y:ys) ~(z:zs) = (x,y,z) : mzip3 xs ys zsmzip3 _ _ _ = []Notice that the size of the torus is a parameter that will usually depend onthe number of available processors (the value of np will usually be bpnoPec),and that a function dist is used to distribute the input data to the ptorusprocesses, while comb is used to produce the �nal output from the subresultsof the torus. The third parameter of the skeleton is the worker function, whichreceives an initial datum of type c from the parent, a datum [a] from the leftneighbor and a datum [b] from its upper neighbor, and produces results [a]and [b] for its neighbors and a �nal result d for its parent. Functions mzip3,mzipWith and mzipWith3 are just lazier versions of functions of the zip family,the di�erence being that our functions use irrefutable patterns for most of itsparameters, as shown for mzip3.The cost model is the following:ttorus = Linit + tworker + L�nalLinit = P (tcreate + tpackC) + tdist + �L�nal = � + P tunpackD + tcombtworker = t# + tunpackC + tcomp+N(tpackA + tpackB + tunpackA + tunpackB + tcomp) + tpackD20

N is the number of rounds each worker does, i.e. the maximum length of lists[a] and [b], and tcomp is the cost of the worker function in each round. It isassumed that P = n � m, i.e. each worker has a separate processor. We arealso assuming that a separate processor is devoted to the manager, that is, thenumber of processors is P + 1.RingA (unidirectional) ring can be considered a particular case of a torus, whereeach process |apart from sending and receiving values to/from the parent|is connected only to two neighbors: the previous link, from which it receivesmessages, and the next link, to which it sends messages. By using dynamicchannels to provide direct connections between links, the ring function createsthe desired topology. Each pring receives an input from the parent, and achannel name to be used to send values to the next link, and produces anoutput to the parent and a channel name to be used to receive inputs from theprevious link. The whole source code of the skeleton is as follows:ring :: (Transmissible a,Transmissible b,Transmissible c) =>Int -> (Int -> a -> [a]) -> ([b] -> b) ->((a,[c]) -> (b,[c])) -> a -> bring n dist comb f input = comb toParent where(toParent,nexts) = unzip outssoutss = [(pring f) # ins | ins <- inss]inss = mzip toChildren prevstoChildren = dist n inputprevs = last nexts : init nexts-- each individual process in the ringpring ::(Transmissible a,Transmissible b,Transmissible c) =>((a,[c]) -> (b,[c])) -> Process (a,ChanName [c]) (b,ChanName [c])pring f = process (fromParent,nextChan) -> outwhere out= new (prevChan, prev)let (toParent,next) = f (fromParent,prev)in nextChan !* next par (toParent,prevChan)The number of links is provided by the programmer as a parameter of the skele-ton. Similarly to the torus, a function dist is used to distribute the input datato the pring processes, while comb combines in a �nal result the outputs pro-duced by each link. The computation to be performed at each link is representedby a function f , which receives an initial datum of type a from the parent anda datum [c] from the previous link and produces output [c] for the next linkand a local result of type b for the parent. Function mzip is just a lazier versionof function zip. 21

The cost model for the ring is very similar to the one for the torus:tring = Linit + tworker + L�nalLinit = P (tcreate + tpackA) + tdist + �L�nal = � + P tunpackB + tcombtworker = t# + tunpackA + tcomp+N(tpackC + tunpackC + tcomp) + tpackBwhere P is the number of links (each in a separate processor) and N is thenumber of rounds each link does, i.e. the maximum length of lists [c], andtcomp is the cost of the worker function in each round.4.4 Application Parallel ProgrammingIn this section we present the results obtained for several examples, whichare typical instances of the previously de�ned skeletons. For each example,both actual and predicted relative speedups are shown. The experiments havebeen performed in a 64-processor Beowulf cluster at the University of St. An-drews. Nodes are 450MHz Pentium II running Linux RedHat 5.2, with 348MBof DRAM and connected through a CISCO 2984G full duplex 100Mb/s fastEthernet switch, being the latency � = 142�s. So, it is a low cost environmentwith high latencies. Eden RTS was running on top of PVM 3.4.2. All the pro-cessors of the Beowulf cluster are equal, so that the main potential sources ofload imbalances come from the algorithms. Due to administrative reasons, ithas not been possible to use all the processors in the tests.4.4.1 Ray Tracing | MapGiven a scene consisting of 3D objects, and given the position of the camera,a ray tracer calculates a 2D image of the scene. For every pixel of the outputimage, the ray tracer shoots a ray into the scene and tests whether it impactswith any object of the scene. When an impact is found, the ray is re
ected andthe colour of the intersection point is computed based on the strength of theray and on the texture of the object's material. The code is based on the Idversion, that is part of the Impala suite [Imp01] of parallel benchmarks. Theprogram was translated to Haskell by the group developing the GPH language.The main function of the program is ray, which receives as parameters thesize of the window x�y and the scene world consisting of a list of spheres. Thecomputation is performed by two nested maps, applying a function tracepixelto each of the pixels of the window. Function camparams computes the param-eters depending on the camera position:ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]ray x y world = map (do_line world) sizes_ywhere do_line :: Int -> [((Int,Int), Vector)]do_line world i = map (\ j -> ((i,j), f world i j)) sizes_xsizes_x = [0..x-1] 22

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
pe

ed
up

number of PEs

ray_rw
predicted_rw

linear speedup

Figure 4.3: Speedups of the ray tracersizes_y = [0..y-1]f world i j = tracepixel world i j firstray scrnx scrny(firstray, scrnx, scrny) = camparams x yThis algorithm can be easily parallelized exploiting the outer map of themain function, and creating a task for each line of the window. Notice that thescene world is needed in all the tasks. Thus, we should use the versions of themap skeleton which incorporate an extra �xed parameter, to guarantee that thescene is communicated only once per processor:ray x y world = map_rw_FD world do_line sizes_y where ...The speedups obtained for a 350� 350 window and a scene of 640 spherescan be seen in Figure 4.3. The sequential execution time was 176.99 seconds.The speedups are quite good, the only ine�ciency being a sequential bottleneckof 1.3 seconds while distributing tasks and combining the results.4.4.2 Euler Numbers | Map and ReduceThe Euler number of a given value x is the number of integers smaller than xthat are relatively prime to x. We are interested in computing the sum of theEuler numbers of the �rst n numbers. This problem has recently been proposedin [TLP01] to compare the way in which di�erent parallel languages based onHaskell are used. The sequential version is trivial:sumEuler :: Int -> IntsumEuler n = sum (map euler [n,n-1..1])euler :: Int -> Inteuler x = length (filter (relprime x) [1..(x-1)])Notice that the problem �ts the map and reduce scheme, as the euler functionis mapped while sum folds all the results into a single one. Moreover, the list23

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

sp
ee

du
p

number of PEs

sumEuler_ss 8000
predicted_ss 8000

linear speedup

Figure 4.4: Speedups of sumEulerof tasks can be trivially computed by each worker, reducing the communicationoverheads. Therefore, the parallelization is straightforward:sumEuler n = map_reduce_ss euler (+) 0 [n,n-1..1]The granularity of the euler function depends directly on the value of theinput parameter. Thus, it is important to take care of the distribution of tasksbetween processes. The granularity decreases as the input value decreases. So,unshu�ing the tasks in a round robin fashion gives a good distribution, asFigure 4.4 shows. The measurements were performed for a problem size of8000, and the sequential time was 80.39 seconds. The only ine�ciency in theparallelization is the time needed to create and initialize the worker processes,that is 0:015 seconds per processor.4.4.3 Karatsuba Algorithm | Divide and ConquerThe Karatsuba algorithm [HS78] computes the product of two large integersusing a divide and conquer approach. Given n as the length of the integers,the complexity of the na��ve strategy for multiplying them is in O(n2), while theKaratsuba algorithm computes it in O(nlog23).If two large integers x and y represented in base b are to be multiplied, thealgorithm works as follows:� Let n be half of the length of the longest of x and y (using the correspond-ing base representation).� Let x1 = x=bn, x2 = xmod bn, y1 = y=bn and y2 = ymod bn.� Let u = x1 � y1, v = x2 � y2, w = (x1 + x2) � (y1 + y2).24

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

sp
ee

du
p

number of PEs

kara_rw 8000
kara_par 8000

kara_rw_predicted 8000
linear speedup

Figure 4.5: Speedup for the Karatsuba algorithm� The result of the multiplication is u � b2�n + (w � u� v) � bn + v.Notice that to obtain x1, x2, y1 and y2 it is not necessary to perform any division,it is enough to cut the lists representing x and y. Analogously, the multiplicationwith bn and b2�n do not need any product multiplication, but only adding zerosto the corresponding long integer. Therefore, only three multiplications areneeded, that is, only three subproblems are generated when splitting a problem.As three subproblems of half the complexity are generated, and combining thesubresults is in O(n), this leads to a complexity in O(nlog23).This algorithm �ts a divide and conquer scheme, where the granularity ofthe subtasks can be varying, as the three multiplications are possibly applied tointegers of di�erent lengths. The implementation of the Karatsuba algorithm interms of the divide and conquer skeleton is as follows, where the implementationof the non-shown functions follows the above explanation.type MyInteger = [Int]karat :: Int -> MyInteger -> MyInteger -> MyIntegerkarat depth is1 is2 = dc_rw depth trivial solve split combine (is1,is2)Both the dc rw and the dc par version of the divide and conquer skeletonhave been tested for the same input data, whose sequential execution time is440 seconds. The speedups predicted and obtained can be seen in Figure 4.5.As expected, the na��ve implementation of the skeleton is worse and also moreirregular than the other, the main reason being that the load balance is poorerand more random. Moreover, the overhead for creating processes is greater.The prediction of the dc rw behavior is quite accurate. No prediction is givenfor the dc par version owing to the lack of an accurate cost model.4.4.4 Conjugate Gradient - Iterate UntilThe gradient conjugate method is an iterative method used to �nd approximatesolutions of linear systems Ax = b in which the coe�cient matrix A is positivede�nite. In each iteration, the current solution x is improved using the function25

x(t) = x(t� 1) + s(t) d(t)where d is the direction vector to the solution, and s is the size of the scalarstep. Each iteration requires the following computations:(1) g(t) = Ax(t� 1) � b(2) d(t) = � g(t) + g(t)T g(t)g(t�1)T g(t�1) d(t� 1)(3) s(t) = � d(t)T g(t)d(t)TAd(t)(4) x(t) = x(t � 1) + s(t) d(t)where in the �rst iteration x(0), d(0) and g(0) are initialized to the zero vector,and g(0) to �b. With this method, the values of x are guaranteed to convergein at most n iterations, being n the number of equations of the system. As eachstep is in O(n2), the algorithm is in O(n3).This algorithm �ts well the iterUntil skeleton: It consists of several steps;each step can be parallelized; and the current step must completely �nish beforestarting the next one.The Eden code parallelizes the product of A and x and also the product ofA and d, as these are the time consuming parts of the algorithm. So, in eachiteration of the algorithm, there are two steps to be performed in parallel. Thiscan be included in the iterUntil skeleton by using an Either type to markwhich step of the iteration is to be computed. The source code is the following:type Input = (Matrix,Vector,Vector,Vector,Vector)type Task = Either Vector Vector -- d or xtype SubResult = Either Vector Vector -- A d or A xtype LocalW = (Matrix,Vector) -- A_i and b_itype LocalM = (Vector,Vector,Vector,Double,Int) -- d,g,x,gg,iterationscg :: Int -> Matrix -> Vector -> Vectorcg a b = cg' a b n0s b (map negate b) where n0s = replicate (length b) 0cg' a b x d g = iterUntil split f_it comb (a,b,x,d,g) wheresplit :: Input -> Int -> ([LocalW],[Task],LocalM)split (a,b,x,d,g) np = (splitIntoN np (zip a b), replicate np (Left d),(d,g,x,prVV g g,length b))f_it :: LocalW -> Task -> (SubResult,LocalW)f_it l t = (f_it' l t,l) -- The local state does not changef_it' (ai,bi) (Right x) = Right (zipWith (-) (prMV ai x) bi) -- gf_it' (ai,bi) (Left d) = Left (prMV ai d) -- A dcomb :: LocalM -> [SubResult] -> Either Vector ([Task],LocalM)comb (d,g,x,gg,cont) srs@(Left _:_) = ...comb (d,g,x,gg,cont) srs@(Right _:_) = ...26

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

sp
ee

du
p

number of PEs

cg 600
predicted 600

linear speedup

Figure 4.6: Speedups of the conjugate gradient algorithmwhere prVVmultiplies vectors, and prMVmultiplies a matrix and a vector. Func-tion comb performs the corresponding computations depending on the step ofthe iteration. That is, perfoms the computations (1) and (2) of the speci�cationof the problem, or the computations (3) and (4).Figure 4.6 shows the speedups obtained for a system of 600 equations, thesequential execution time being 684 seconds. The speedups do not scale well.The curve
attens out for more than four processor elements. The reason forthese results is the bad computation-communication ratio. In each iteration,the main process communicates O(n � p) values, while the computation of theworkers are in O(n2=p). Thus, the communication costs increase with moreprocessor elements while the computation decreases. Good speedups can onlybe expected if n� p2.The reasons why the speedups are worse than in other languages are two:(1) the packing and unpacking routines of Eden are not optimized yet, so thecommunications overheads are comparatively higher; and (2) there are not mul-ticasting facilities to reduce the communications when a processor needs to sendthe same information to several processors. We hope to overcome these two lim-itations in the near future.4.4.5 Matrix Multiplication | TorusThe product of an m�n matrix (M1) and an n�p matrix (M2), yields an m�pmatrix (M), where M(i,j) is the dot product of the i-th row of M1 and the j-thcolumn of M2:type Matrix = [[Int]]prMM :: Matrix -> Matrix -> MatrixprMM m1 m2 = prMMTr m1 (transpose m2)prMMTr m1 m2 = [[sum (zipWith (*) row col) | col <- m2] | row <- m1]Each element of the resulting matrix can be computed in parallel. If the sizeof the matrices is n � n, and p processors are available, a �rst approach could27

be to generate p tasks, each one evaluating n=p rows of the resulting matrix.As the granularity of the tasks is very regular, the corresponding Eden programuses the simple map par skeleton:prMM_naive :: Matrix -> Matrix -> MatrixprMM_naive m1 m2 = concat out whereout = map_par (uncurry prMMTr) (zip (splitIntoN noPe m1) (repeat m2'))m2' = transpose m2where splitIntoN n xs splits xs into n nearly equal size sublists.The communications of the main process are in O(n2�p) and the computationof each process will be in O(n3=p). Note that this is a similar ratio like the onefor the conjugate gradient and so the speedup curve will rapidly
atten out fora �xed input size when increasing the number of processors (see Figure 4.8).Gentleman's algorithm [Gen78] can be used to decrease the communicationoverhead. The matrices are distributed block-wise to the processes which areorganized in a torus topology, so that initially each process receives only aportion of the inputs, and it obtains the rest of them from its neighbors: Thesub-matrices of the �rst matrix are rotated from left to right in the torus,while those of the second matrix are rotated from top to bottom. Each processcomputes a rectangular block of the �nal matrix, as depicted in Figure 4.7. Thealgorithm needs pp iterations, where p denotes the total number of processes inthe torus. In each iteration, a process computes the product of its sub-matrices,adds this element-wise to its intermediate result block and communicates itssub-matrices with its neighbor processes.To instantiate the torus skeleton one only needs to de�ne the size of thetorus |i.e. bppc, to split the matrices into blocks, and to de�ne the function tobe applied. The node function just constructs a list of block multiplications |one for each pair of blocks it receives| and then adds up all the products. Thenumber of multiplications performed by each process is the size of the torus.prMM_torus :: Matrix -> Matrix -> MatrixprMM_torus m1 m2 = torus torusSize split combine (mult torusSize) (m1,m2)where torusSize = (floor . sqrt . fromInt) noPecombine = concat . (map (foldr (zipWith (++)) (repeat [])))split = ...-- Function performed by each workermult :: Int -> ((Matrix,Matrix),[Matrix],[Matrix]) ->(Matrix,[Matrix],[Matrix])mult size ((sm1,sm2),sm1s,sm2s) = (result,toRight,toBottom)where toRight = take (size-1) (sm1:sm1s)toBottom = take (size-1) (sm2':sm2s)sm2' = transpose sm2sms = zipWith prMMTr (sm1:sm1s) (sm2':sm2s)result = foldl1' addMatrices smswhere split is a simple Haskell function that splits the matrices into blocksand shifts them appropriately to have matching torus inputs.28

Figure 4.7: Matrix multiplica-tion using blocks 0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
sp

ee
du

p
number of PEs

prMM_naive 600
prMM_torus 600

prMM_naive_predicted 600
prMM_torus_predicted 600

linear speedup

Figure 4.8: Speedups of matrix multiplicationThe computation of each process is still in O(n3=p), while the communicationoverhead of the main process reduces to O(n2). The communication in eachprocess is however now in O(n2=pp). Another drawback is that a perfect squarenumber of processes is needed to form the torus.Figure 4.8 shows the speedup pro�les for the two Eden versions of matrixmultiplication using square matrices of size 600� 600, the sequential executiontime being 221 seconds. It can be seen that the �rst parallelization only scaleswell up to 8 processors and then
attens out. The predicted speedup of thisversion is quite close to the actual speedup obtained. In this case, the dominantparameter of the cost model is tpackI , as 2:3 seconds are needed to pack thewhole second matrix. This parameter is multiplied by P in Linit. Thus, thecommunication overhead increases linearly with the number of processors.The torus version scales much better and the prediction is also quite accuratein all points but in the perfect squares. The reason is that the cost modelassumes that the main process does not share a processor with a worker, butin our measurements this was not the case for perfect squares. The cost modelcould be easily adjusted to take this fact into account.The main reason why the torus scales better than the simple approach canbe seen in the cost model: Now, Linit does not depend heavily on the numberof processors because tpackC is proportional to 1=P : as P increases, the blocksize is smaller. The total communication cost incurred at the beginning of thecomputation is the same.4.4.6 Pair Interactions | RingLet us assume that we want to determine the force undergone by each particlein a set of n atoms. The total force vector fi acting on each atom xi, isfi = nXj=1 F (xi; xj) 29

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
pe

ed
up

number of PEs

pairs_ring
predicted

linear speedup

Figure 4.9: Speedups of pair interactionswhere F (xi; xj) denotes the attraction or repulsion between atoms xi and xj .This constitutes an example of pairwise interactions. For a parallel algo-rithm, we may consider n independent tasks, each devoted to compute the totalforce acting on a single atom. Thus, task i is given the datum xi and computesfF (xi; xj) j i 6= jg. It is however inconceivable to have a separate process foreach task when dealing with a large set of particles, as it is usually the case.Therefore, we distribute the atoms in as many subsets as the number of pro-cessors available. We use a ring structure, so that all the data can
ow around.In the �rst iteration, each process will compute the forces between the localparticles assigned to it. Then, in each iteration it will receive a new set of parti-cles, and it will compute the forces between its own particles and the new ones,adding the forces to the ones already computed in the previous iterations:force :: [Atom] -> [ForceVec] force xs = ring noPe splitIntoNconcat (force' np) xs force' :: Int -> ([Atom],[[Atom]]) ->([ForceVec],[[Atom]]) force' np (local,ins) = (total,outs)where outs = take (np - 1) (local : ins)total = foldl1' f forcessf acums news = zipWith addForces acums newsforcess = [map (faux ats) local | ats <- (local:ins)]faux xs y = sumForces (map (forcebetween y) xs)sumForces l = foldl' addForces nullvector lFigure 4.9 shows the speedups obtained using 7000 particles, the sequentialexecution time being 194:86 seconds. The total communications of each processare in O(n), while its computations are in O(n2=p), n being the number ofparticles and p the number of processors. As the communications are nownegligible, and the work to be done in the parent process is also minimal, themain ine�ciency is the time needed in the parent to create and initialize thechild processes: 0:03 seconds per child.30

4.5 Related Work and ConclusionsWell-known approaches to introduce skeletons in a parallel language include:Darlington et al. [DFH+93], P 3L [Pel98], Skil [BK96], and others. As Eden,Skil allows to design new skeletons in the language itself, the main di�erencebeing that Skil is based on the imperative host language C.In PMLS [SMH01] Scaife et al. extend an ML compiler by machinery whichautomatically searches the given program for higher-order functions which aresuitable for parallelisation. During compilation these are replaced by e�cientlow-level implementations written in C and MPI. In HaskSkel [HR99], Ham-mond and Reb�on Portillo combine the evaluation strategies of GpH [THLP98]with Okasaki's Edison library [Oka00] (which provides e�cient implementationsof data structures) to implement parallel skeletons in GpH. Other funcional lan-guages with parallel facilities are Concurrent Clean [Kes95] and Caliban [HM99,Chapter 14]. These languages would be appropriate for the de�nition of skele-tons as they have an explicit notion of process. Nevertheless, not much workhas been done in this direction.The main di�erences between Eden and more traditional skeleton-based lan-guages are two: (1) Eden is functional while the vast majority of skeleton im-plementation languages are imperative, and (2) skeletons can be implementedand used within the same language. In other approaches, skeletons are oftenimplemented in a low-level language di�erent from the language in which theyare used.The advantages of (1) can be experienced from the skeletons presented inthis chapter. The whole code is included for most of them, and these codeportions are rather short. Typically they �t is less than half a page. This is aconsequence of the higher level of abstraction of functional languages comparedto imperative ones. This higher level also extends to the coordination features.Compared to an implementation by using a message passing library such as MPI,less details are given. For instance, neither explicit message sending/receiving,nor initialization/termination routines need to be called.The advantages of (2) are also evident: Eden, as a skeleton-based language,is easily extensible. The programmer may create new skeletons at any time, ormodify the existent ones, and immediately use them in the same program text.Thus, Eden serves both as an application and as a system language, yieldinga high degree of
exibility for the programmer. In other approaches, skeletoncreation is a hard task and it is normally considered as a specialized systemactivity, or as part of the compiler contruction. Application programmers arenot allowed to create new skeletons.Of course, everything comes at a price. Eden, as a system language, o�ersto the programmer less opportunities for optimization than other lower-levellanguages. For instance, the packing conventions of Eden for communicatingstreams are often not convenient for some applications. Also, the lack of broad-casting facilities may lead to higher overheads (e.g. see Section 4.4.5).All the speedups reported here are relative to the time of the same parallelprogram running in a single processor. So, absolute speedups, i.e. speedups31

relative to the best sequential version of the algorithm, written for instance inC, are expected to be lower. This will be due, of course, to the constant factorbetween a Haskell implementation and one done in C (this factor has beenreported to be around 4 in [HFea96]). But also, lower relative speedups thanthose of an implementation written, for instance, in C + MPI can be expected.These will be due to the lower overheads introduced by MPI with respect to ourRTS, which have been remarked in the precedent paragraph.So, we do not claim to achieve optimal speedups with Eden. Our divise canbe summarized in the following sentence: acceptable speedups at low e�ort. Ifsomeone aims at better speedups, then a di�erent language, and probably moree�ort, would be needed.Parallel applications in Eden can also be done by explicitly instantiatingprocesses. This corresponds to doing sequential functional programming withexplicit recursion. Sometimes this is appropriate, but an experienced functionalprogrammer will try to use higher-order functions, i.e. skeletons, as much aspossible in order to reduce the amount of work and the possibility of makingmistakes. Nevertheles, explicit process instantiation is not forbidden. A com-plex application could use both available skeletons and explicit instantiation.Even new skeletons could be de�ned and used in the program. This gives theprogrammer complete
exibility about the use of the parallel facilities of thelanguage.In this chapter several typical data-parallel, task-parallel and systolic skele-tons have been considered in Eden. Each skeleton has been �rst speci�ed by asequential function and then implemented in parallel, some of them in severaldi�erent ways. Cost models for predicting the execution time of the implemen-tations have been de�ned. Several example programs have been parallelizedusing the skeletons and measured on a Beowulf cluster with several dozens ofprocessing elements. The experiments have shown the
exibility and the e�-ciency of skeletal programming in Eden. The predictions of the cost modelshave been accurate.

32

Bibliography[BK96] G. H. Botorog and H. Kuchen. E�cient Parallel Programming withAlgorithmic Skeletons. In EuroPar, LNCS 1123, pages 718 { 731. EcoleNormale Sup�erieure de Lyon, Springer Verlag, 1996.[BKL98a] S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to(Parallel) Eden: An Implementation Point of View. In PLILP'98, pages318{334. LNCS 1490, Springer-Verlag, 1998.[BKL+98b] S. Breitinger, U. Klusik, R. Loogen, Y. Ortega-Mall�en, and R. Pe~na.DREAM: the Distributed Eden Abstract Machine. In Selected Papers ofImplementation of Functional Languages, IFL'97. St. Andrews, Scotland,pages 250{269. LNCS 1467. Springer-Verlag, 1998.[BLOMP97] S. Breitinger, R. Loogen, Y. Ortega-Mall�en, and R. Pe~na. The EdenCoordination Model for Distributed Memory Systems. In Workshop onHigh-level Parallel Programming Models, HIPS'97, pages 120{124. IEEEComputer Science Press, 1997.[BLOP96] S. Breitinger, R. Loogen, Y. Ortega Mall�en, and R. Pe~na. Eden: Lan-guage De�nition and Operational Semantics. Technical Report, Bericht96-10, revised version, Philipps-Universit�at Marburg, Germany, 1996.[Col89] M. Cole. Algorithmic Skeletons: Structure Management of Parallel Com-putations. MIT Press, 1989. Research Monographs in Parallel and Dis-tributed Computing.[DFH+93] J. Darlington, A.J. Field, P.G. Harrison, P.H.J. Kelly, D.W.N. Sharp,Q. Wu, and R.L. While. Parallel Programming Using Skeleton Functions.In Parallel Architectures and Languages Europe. Springer, 1993.[GBDJ94] A. Geist, Ad. Beguelin, J. Dongarra, and W. Jiang. PVM: Parallel Vir-tual Machine. MIT Press, 1994.[Gen78] W. M. Gentleman. Some Complexity Results for Matrix Computationson Parallel Computers. Journal of the ACM, 25(1):112{115, Jan 1978.[Ham00] M. Hamdan. A Combinational Framework for Parallel Programming Us-ing Algorithmic Skeletons. PhD thesis, Department of Computing andElectrical Engineering. Heriot-Watt University, 2000.[HFea96] P. H. Hartel, M. Feeley, and M. Alt et al. Benchmarking Implementationsof Functional Languages with "Pseudoknot", a Float-Intensive Bench-mark. Journal of Functional Programming, 4(6):621{655, July 1996.[HM99] K. Hammond and G. J. Michaelson, editors. Research Directions inParallel Functional Programming. Springer-Verlag, 1999.33

[HR99] K. Hammond and A. J. Reb�on Portillo. HaskSkel: Algorithmic Skele-tons for Haskell. In Implementation of Functional Languages (IFL'99),Selected Papers, LNCS 1868, Lochem, The Netherlands, September 1999.Springer-Verlag.[HS78] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Pit-man, 1978.[Imp01] Impala. Impala { (IMplicitly PArallel LAnguage Application Suite).<URL:http://www.csg.lcs.mit.edu/impala/>, July 2001.[Kes95] M. Kesseler. Constructing skeletons in Clean: The bare bones. InA. P. Wim Bohm and John T. Feo, editors, High Performance Func-tional Computing, pages 182{192, April 1995.[KLPR01] U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation Skele-tons in Eden: Low-E�ort Parallel Programming. In Selected papers ofImplementation of Functional Languages, IFL 2000. LNCS 2011, 2001.[KOMP99] U. Klusik, Y. Ortega-Mall�en, and R. Pe~na. Implementing Eden - or:Dreams Become Reality. In Selected Papers of Implementation of Func-tional Languages, IFL'98, London, Sept. 1998, pages 103{119. LNCS1595. Springer-Verlag, 1999.[KPR01] U. Klusik, R. Pe~na, and F. Rubio. Replicated Workers in Eden. In Con-structive Methods for Parallel Programming (CMPP'2000). To appear.Nova Science, 2001.[MPI94] MPI Forum. MPI: A Message-passing Interface Standard. InternationalJournal of Supercomputer Applications, 8(3/4), 1994.[Oka00] C. Okasaki. An Overview of Edison. In Haskell Workshop, 2000.[Pel98] S. Pelagatti. Structured Development of Parallel Programs. Taylor andFrancis, 1998.[Pey96] S. L. Peyton Jones. Compiling Haskell by Program Transformations: AReport from the Trenches. In ESOP'96. LNCS 1058, Springer-Verlag,1996.[PH99] S. L. Peyton Jones and J. Hughes, editors. Report on the ProgrammingLanguage Haskell 98. URL http://www.haskell.org, February 1999.[PHH+93] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L.Wadler. The Glasgow Haskell Compiler: A Technical Overview. In JointFramework for Inf. Technology, Keele, pages 249{257, 1993.[PR01] R. Pe~na and F. Rubio. Parallel Functional Programming at Two Levelsof Abstraction. In Principles and Practice of Declarative Programming(PPDP01). ACM Press, September 2001.[PRS01] R. Pe~na, F. Rubio, and C. Segura. Deriving Non-Hierarchical ProcessTopologies. In Draft Proceedings of the 3rd Scottish Functional Program-ming Workshop, 2001.[PS01] R. Pe~na and C. Segura. Non-Determinism Analysis in a Parallel-Functional Language. In Selected papers of Implementation of FunctionalLanguages, IFL00., pages 1{18. LNCS 2011. Springer-Verlag, 2001.[Qui94] M. J. Quinn. Parallel Computing. McGraw-Hill, 1994.34

[SMH01] N. Scaife, G. Michaelson, and S. Horiguchi. Comparative Cross-PlatformResults from a Parallelizing SML Compiler. In Draft Proceedings ofImplementation of Functional Languages, IFL'01, Stockholm (Sweden),2001.[THJ+96] P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, andS. L. Peyton Jones. GUM: a Portable Parallel Implementation of Haskell.In ACM SIGPLAN Conference on Programming Language Design andImplementation. ACM Press, 1996.[THLP98] P. W. Trinder, K. Hammond, H. W. Loidl, and S. L. Peyton Jones. Al-gorithm + Strategy = Parallelism. Journal of Functional Programming,8(1), 1998.[TLP01] P. W. Trinder, H. W. Loidl, and R. Pointon. Parallel and DistributedHaskells. Journal of Functional Programming, 2001. To appear.

35

