Chapter 4

Parallelism Abstractions in
Eden

Rita Loogen, Yolanda Ortega, Ricardo Pena,
Steffen Priebe, and Fernando Rubio!

The parallel functional programming language Eden extends Haskell with ex-
pressions to define and instantiate process systems. These extensions allow also
the easy implementation of skeletons as higher-order functions. Parallel pro-
gramming is possible in Eden at two levels: The first level is the most abstract
one and it is appropriate for building parallel applications at low effort on top
of the predefined skeletons. At the lower level, the programmer instantiates
processes explicitly, being able to create new skeletons, and also to build appli-
cations with irregular parallelism for which there is not an appropriate skeleton
to apply. In this chapter, we present several skeletons covering a wide range of
parallel structures. For each skeleton, one or more implementations in Eden are
given, together with their corresponding cost models. We also show examples of
application programming, including predicted and actual results on a Beowulf.

4.1 Introduction

Two important abstractions have contributed to create a reliable programming
methodology for industrial-strength programs. These are functional abstrac-
tion (which has received different names in programming languages, such as
procedure, subroutine, function, etc), and data abstraction (also with different
names such as abstract data type, object, package or simply module). In both
abstractions two different pieces of information are distinguished:

IWork partially supported by the spanish project TIC2000-0738, Spanish-British Accién
Integrada HB 1999-0102 and a German-British ARC cooperation funded by the German
Academic Exchange Service (DAAD).

e The specification defines its external behaviour. It contains all the infor-
mation needed by a potential user of the abstraction.

e The implementation determines its efficiency. In general, there can be
several implementations for the same specification.

Several algorithmic schemes have been identified to solve different problem fam-
ilies in sequential programming. For instance, there exist the greedy method,
the dynamic programming method or the divide and conquer method. Analo-
gously, parallel algorithms can be classified into families, so that all members of
a family are solved by using the same scheme. The abstraction of this scheme
is what we call an algorithmic skeleton, or simply a skeleton [Col89).

Its specification describes at least the values returned by the skeleton for
each possible input, i.e. its functional behaviour. But usually it also describes
the family of problems to which the skeleton is applicable. For instance, there
exists a parallel divide and conquer skeleton useful for problems for which a
function split (to divide a problem into subproblems), and a function combine
(to combine the sub-results) exist. In fact the skeleton solves the same problem
family as the sequential divide and conquer scheme. We take the position that,
as part of the specification, a sequential algorithm solving the family of problems
should be provided. Frequently, this sequential algorithm is actually used by
the implementations in some of the parallel processes.

Normally, a skeleton can be implemented in several different ways. Imple-
mentations may differ in the process topology created, in the granularity of the
tasks, in the load balancing strategy or in the target architecture used to run
the program. So, the implementation hides many details to the potential user,
and also determines the efficiency of the program.

One of the main characteristics of skeletons is that it should be possible to
predict the efficiency of each implementation. This can be done by providing a
cost model together with each implementation. A cost model is just a formula
stating the predicted parallel time of the algorithm [Ham00]. To build this
formula, the implementor has to consider all the activities which take place in
the critical path of the algorithm. This includes the initial sequential actions
needed to put at work all the processors of the parallel machine, the maximum of
the individual times needed by the processors, and the final sequential actions,
which take place between finishing the last subtask and delivering the final
result. Cost models will be parameterized by some constants that may depend
either on the problem to be solved, on the underlying parallel architecture, or
on the runtime system (RTS) being used.

For the functional programmer, a skeleton is nothing more than a polymor-
phic higher-order function which can be applied with many different types and
parameters. Thus, programming with skeletons follows the same principle as
programming with higher-order functions, that is the same principle used in any
abstraction: to define each concept once and to reuse it many times.

2

Eden [BLOP96, BLOMP97] is one of the few functional languages in which
skeletons can be both wused and implemented. In other approaches, the cre-
ation of new skeletons is considered as a system programming task, or even as
a compiler construction task. Skeletons are implemented by using imperative
languages and parallel libraries. Therefore, these systems offer a closed collec-
tion of skeletons which the application programmer can use, but without the
possibility of creating new ones, so that adding a new skeleton usually implies
a considerable effort.

In Section 4.2 we introduce the features of Eden that are used in the skele-
ton definitions in Section 4.3. Section 4.4 presents several example applica-
tions which are parallelized using the skeletons. Runtime results show that the
skeleton-based parallelization leads to reasonable speedups on a Beowulf cluster.
Moreover, the actual runtime results correspond to the ones predicted by the
cost models of the skeletons. The chapter finishes with a discussion of related
work and conclusions.

4.2 FEden’s Main Features

Eden [BLOP96, BLOMP97] extends the lazy functional language Haskell [PH99]
by syntactic constructs for ezplicitly defining processes. Eden’s process model
provides direct control over process granularity, data distribution and commu-
nication topology.

4.2.1 Basic Constructs

A process abstraction expression process x -> e of type Process a b defines
the behaviour of a process having the formal parameter x: :a as input and the
expression e: :b as output. Process abstractions of type Process a b can be
compared to functions of type a -> b, the main difference being that the former,
when instantiated, are executed in parallel.

A process instantiation uses the predefined infix operator

(#) :: (Transmissible a, Transmissible b) => Process a b -> a -> b

to provide a process abstraction with actual input parameters. The context
Transmissible a ensures that functions for the transmission of values of type
a are available.

The evaluation of an expression (process x -> el) # e2 leads to the dy-
namic creation of a process together with its interconnecting communication
channels. The instantiating or parent process will be responsible for evaluating
and sending e2 via an implicitly generated channel, while the new child process
will evaluate the application (\ x -> el) e2 and return the result via another
implicitly generated channel. The instantiation protocol deserves some atten-
tion: (1) Expression el together with its whole environment is copied, in the
current evaluation state, to a new processor, and the child process is created
there to evaluate the expression (\ x -> el) e2 where e2 must be remotely

3

received. (2) Expression e2 is eagerly evaluated in the parent process. The
resulting full normal form data is communicated to the child process as its in-
put argument. (3) The normal form of the value (\ x -> el) e2 is sent back
to the parent. For input or output tuples, independent concurrent threads are
created to evaluate each component.

Processes communicate via unidirectional channels which connect one writer
to exactly one reader. Once a process is running, only fully evaluated data ob-
jects are communicated. The only exceptions are lists, which are transmitted in
a stream-like fashion, i.e. element by element. Each list element is first evaluated
to full normal form and then transmitted. Concurrent threads trying to access
input which is not available yet, are temporarily suspended. This is the only
way in which Eden processes synchronize.

Ezample 4.1 Replacing the function application in the map function:

map it (a => b) -> [a]l -> [b]
map f xs = [f x | x <~ xs]

by a process instantiation, leads to a simple parallel map skeleton, in which a
different process is created for each element of the input list:

map_par :: (Transmissible a, Transmissible b) => (a -> b) -> [a] -> [b]
map_par f xs = [pf # x | x <~ xs] ‘using‘ spine
where pf = process x -> f x

The process abstraction pf wraps the function application (f x). It determines
that the input parameter x as well as the result value will be transmitted on
channels. Therefore both types a and b must belong to the class Transmissible.

The spine strategy is used to eagerly evaluate the spine of the process
instantiation list. In this way all processes are immediately created. Strate-
gies [THLP98] are functions which control the evaluation of expressions without
producing a result value. They are applied by means of the function using, that
first applies the strategy to the input, and then returns the value of the input:

using x s = s x ‘seq‘ x

spine i [al > O
spine [] =0
spine (_:xs) = spine xs

map_par is an essential primitive skeleton used to eagerly create a set of inde-
pendent processes. More sophisticated parallel implementations of map, built on
top of it, will be presented in the following section (see also [KLPRO1, PRO1]).

q

Process abstractions in Eden are not just annotations but first class val-
ues which can be manipulated by the programmer (i.e. communicated through
channels, stored in data structures, and so on). This facilitates the definition of
skeletons as higher order functions. Process instantiations dynamically create

4

processes. Thus, in general, the number of processes cannot be determined at
compile time.

Eden is based on Haskell, a non-strict functional language. Non-strictness,
implemented by using lazy evaluation of expressions, is a key point in our ap-
proach. For instance, in Eden it is possible to create circular topologies of
processes connected by lists. In an eager language this will simply lead to a
deadlock, as a process cannot completely evaluate its output because it will
probably need its whole input, which is still being produced by another process,
which in turn will demand its whole input, and so on. Another interesting fea-
ture of non-strictness in our Eden programs is that they can be automatically
converted to a working sequential program in Haskell just by replacing processes
by functions (a small syntactic change as seen above). From Haskell’s point of
view, our process topologies will then simply look like a set of mutually recursive
functions.

Lazy evaluation is changed to eager evaluation in two cases: processes are
eagerly instantiated, and instantiated processes produce their output even if it
is not demanded. These modifications aim at increasing the parallelism degree
and at speeding up the distribution of the computation. In general, a process
is implemented by several threads concurrently running in the same processor,
so that different values can be produced independently. The concept of a vir-
tually shared global graph does not exist. Each process evaluates its outputs
autonomously.

4.2.2 Many-to-one Communication

Many-to-one communication is an essential feature for some parallel applica-
tions, but it spoils the purity of functional languages, as it introduces non-
determinism. In Eden, the predefined process abstraction

merge :: Transmissible a => Process [[a]l] [a]

is used to instantiate processes which fairly merge lists of input streams into
single (non-deterministic) output streams. The incoming values are passed to
the output stream in the order in which they arrive. In this way merge pro-
vides many-to-one communication. It can profitably be used to react quickly to
requests coming in an unpredictable order from a set of processes.

Even though the skeletons presented are deterministic, some of them are re-
quired to immediately react to requests for work coming from a group of worker
processes. An instantiation of merge will propagate these requests as they are
being produced. Functional purity can still be preserved in most portions of
an Eden program. A non-determinism analysis [PS01] detects the expressions
which are sure to be deterministic even in presence of merge instantiations.

4.2.3 Dynamic channels

An Eden process may generate a new dynamic input channel and send a message
containing the channel’s name to another process. The receiving process may

5

then either use the name to return some information to the sender process
(receive and use), or pass the channel name further on to another process (receive
and pass). Both possibilities exclude each other, and a runtime error occurs if
not appropriately used.

Eden introduces a new unary type constructor ChanName for the names of
dynamically created channels. Moreover, it also adds a new expression

new (ch_name, chan) e

This declares a new channel name ch_name as reference to the new input channel
chan, which represents future input. The scope of both is the body expression
e. The name should be sent to another process to establish the communication.
A process receiving a channel name ch name, and wanting to reply through
it, uses an expression ch name !* el par e2 . Before e2 is evaluated, a new
concurrent thread for the evaluation of el is generated, whose normal form result
is transmitted via the dynamic channel. The result of the overall expression is
e2, while the communication through the dynamic channel is a side effect.

Dynamic channels are a non-functional feature, and its denotational meaning
is a difficult issue, as it needs to take into account the global state of the process
system. In most situations —in particular in all the skeletons presented in this
chapter— it is possible to create the same topologies without using dynamic
channels, the main difference being that some channels will connect the intended
processes through intermediate threads in other processes. By using dynamic
channels those will be direct connections. In this sense, in this paper this feature
can be seen as an optimization using a low-level construct provided by the
language rather than as a radically new concept.

4.2.4 Eden Implementation

Eden’s compiler? has been developed by extending the Glasgow Haskell Com-
piler (GHC) [PHH93, Pey96], in order to reuse its efficiency and portability.
Eden’s runtime system (RTS) is an implementation of the DREAM abstract ma-
chine [BKL'98b] on top of a message passing library. In the current compiler,
both PVM [GBDJ94] and MPI [MPI94] can be used. Therefore, the compiler
can be ported to any architecture where GHC and either PVM or MPI are
available.

Eden compiler has been developed by modifying two parts of GHC. Firstly,
the front-end has been extended to deal with the new Eden constructions. The
modification is done in such a way that the extra constructions are hidden after
the parser. The idea is that the constructions are translated into applications of
predefined Eden functions, that will be used to connect GHC with Eden RTS.
By doing so, it is not necessary to modify the compilation process of GHC,
as its internal constructions are still the same. Eden extensions only appear
again at runtime, when its predefined functions are invoked. Eden RTS extends
GHC RTS in order to implement the DREAM abstract machine, and this is

2Freely available at http://www.mathematik.uni-marburg.de/inf/eden

6

done by modifying GUM, the implementation of GpH [THJ*96]. See [BKL98a,
KOMP99] for more details about Eden implementation.

Eden provides no placement annotations. However, Eden’s RTS supports
two modes to map processes to processors, which can be chosen by the user for
each execution. Round-robin mode: If several processes are instantiated from a
particular processor p, they are mapped to consecutive processors starting with
the one numbered one more than p. Random mode: Each processor maps in-
stantiated processes to randomly chosen processors. Notice that the round-robin
mode allows the programmer to control somehow the mapping of processes, as
he/she can achieve that different processes will be placed on different processors.

The number of processors is provided by the integer constant noPe. It can be
used to adapt the number of processes to the number of available processors.

4.3 Skeletons in Eden

Skeletons and alternative parallel implementations of them can easily be de-
fined in a higher-order functional language with explicit parallelism like Eden.
Describing both the functional specification and the parallel implementation
of a skeleton in the same language context has several advantages. First, it
constitutes a good basis for formal reasoning and correctness proofs. Second,
it provides much flexibility, as skeleton implementations can easily be adapted
to special cases, and if necessary, new skeletons can even be introduced by
the programmer himself. In this section we present many typical data-parallel,
task-parallel and systolic skeletons in Eden, and discuss alternative parallel im-
plementations of these skeletons together with appropriate cost models.

4.3.1 Cost Models

The cost models presented in this section are an adaptation of classical cost
models appearing in the literature (see e.g. [Ham00]). In Eden, the parallel
computation starts and finishes always in the main process, from which other
processes may be instantiated. In some cases, all the child processes are created
from the same parent process. In other cases, a child process creates another
child process, which in turn creates others, and so on. The cost models below
take into account the creation and termination of processes in the critical path,
i.e. the processes created from the beginning of the main process until all pro-
cessors are computing in parallel, and the activities from the end of the last
child until the main process terminates.

We will use the parameters shown in Figure 4.1 and combine some of them
into higher-level parameters. The local costs, i.e. CPU time, to pack or to
unpack a message with nw words for sending or receiving, respectively, is given
by

time(nw) = A+ B x nw.

Problem dependent parameters

N size of the input
ty sequential CPU time for function f
nwl number of words of input message going to a child

nw(O number of words of output message coming from a child
RTS dependent parameters
tereate CPU time in a parent processor to create a child process

ty CPU time in a child processor to set up the child process
Architecture dependent parameters

P number of processors

1) latency of a message, from start sending to start receiving
A start-up fixed CPU cost for sending or receiving a message
8 per-word CPU cost for sending or receiving a message

Figure 4.1: Parameters of the cost models

As we do not distinguish between packing and unpacking messages, the CPU
time for packing or unpacking a message going to a child process is

tunpack] = tpackI = time(nw[)
In the same way, the time for packing or unpacking an output coming from a
child is

tunpackO = tpackO = tzme(nwO)
Example 4.2 In the map_par skeleton defined in Section 4.2 a process is created
for each element in the list. If the number of tasks is greater than the number
of processors, several tasks will be evaluated in each processor. For the cost

model, we assume a round-robin distribution of processes onto processors and
a uniform granularity of tasks:

tmap_par = Linit + tprocessor + Lﬁnal

Linis = N(tcreate + tpackI) +9

Lﬁnal = 0+ tunpackO

tprocessor = [%-l (t# + tunpack] + tf + tpackO)

The first formula describes the critical path determining the parallel time. This
path consists of a startup phase taking time L;;:, an intermediate phase with
time tprocessor Where all processes work in parallel, and a final shutdown phase
with time Lg,q. Before the last worker starts computing, P processes must be
created and P messages must be packed in the parent. The remaining N — P
process creations and message packing are interleaved in the same processor
as the last worker, i.e. they are in the critical path, so we have attributed
these costs to Ljn;. After the last worker finishes, an output message must
first arrive to the parent (hence the ¢ latency) and then be unpacked. The
most heavily loaded processor will get f%] tasks. We are assuming that the
remaining manager costs (i.e. the reception of the N — 1 remaining messages)
are outside the critical path. <

4.3.2 Data Parallel Skeletons

Data-parallel skeletons define global operations over large data structures, where
the individual operations on single elements or substructures of the data struc-
ture are performed in parallel. The simplest data-parallel skeleton is map which
applies the same function f on different elements of a distributed data struc-
ture, in our case a list. Another skeleton we will consider, is map and reduce,
a combination of a map and a fold.

In a data-parallel language, the sequential code of each process is assumed to
be stored at every processor, and the global data already distributed according
to the programmer’s declaration for the data structure. So, the programmer is
not concerned with process creation and/or communication. These take place
implicitly when needed by the algorithm. In Eden, the computation starts in a
single process and the programmer is responsible for instantiating processes and
for specifying the distribution of data between them. This is so because Eden
is not a data-parallel, but a task-parallel language. Therefore, the following
skeletons can be seen as an approximation of how to express data parallelism in
a task-parallel language.

Map

In most parallel implementations of the well-known map function, the input list
is considered as a task queue that can be processed using several processor
elements (PEs). In Section 4.2 we have already shown a straightforward par-
allelization of map, map_par, which creates a new process for each task. This
simple approach is not always well suited, especially in the presence of many
fine-grained or irregular tasks. Alternative parallel implementations of map use
a fixed number of worker processes, each processing a tasks subset.

Farm Implementation. The main process of the farm implementation cre-
ates as many processes as processors are available, distributes the tasks evenly
amongst the processes, and collects the results. Each process applies the pa-
rameter function to each task it receives, and sends the results back to the main
process. The number of workers np, and the distribution and collection func-
tions unshuffle and shuffle are parameters of farm. The map_par skeleton
is used to create as many processes as the number of task lists into which the
original list is distributed.

map_farm :: (Transmissible a,Transmissible b) =>
(a->b) -> [al -> [b]

map_farm = farm noPe unshuffle shuffle

farm :: (Transmissible a, Transmissible b) =>

Int -> (Int->[al->[[al]l) -> ([[b]1->[b]l) -> (a->b) -> [al -> [b]
farm np unshuffle shuffle f tasks
= shuffle (map_par (map f) (unshuffle np tasks))

9

noPe is a constant giving the number of available processors. Different strategies
to split the work into the different processes can be used provided that, for every
list xs, (shuffle . unshuffle n) xs == xs holds.

The farm implementation is appropriate when task granularity is uniform,
and when an even distribution of tasks amongst all the processors can be
achieved. In order to place the processes on different processors, the round-
robin mode of the RTS should be used. Moreover, to improve the load balance,
the length of the task list should be much higher than the number of available
processors, so that it is not relevant the fact that one processor may receive one
task in excess of those of other processors. Alternatively, the number of tasks
should be a multiple of the number of processors.

In the cost model for map_farm the costs of shuffling and unshuffling are
added and only one process is created per processor:

tmap_farm = Lim't + tworker + Lﬁnal

Lim't = P(tcreate + tpackI + tunshuﬁiel) +]
Lﬁnal = 0+ tunpackO + tshu]’j‘le1

tworker = t# + (%] (tunpackl + tf + tpackO)

tunshuffle, 18 the time needed to distribute one element of the task list. It is
multiplied by P, because a task must be delivered for each worker. We are
assuming that the CPU time not shown in the parent (i.e. unshuffling and
shuffling the rest of the tasks) is small and does not affect the critical path. If
this were not the case, we would assign a separate processor to the main process
and these times will then be outside the critical path. The price to be paid is
devoting a single processor to the parent. For that purpose, we introduce the
following variants of the map_farm skeleton:

map_farm_1 :: (Transmissible a,Transmissible b) =>
(a->b) -> [a] -> [b]
map_farm_1 = farm (noPe-1) shuffle unshuffle

map_farm_thr :: (Transmissible a,Transmissible b) =>
Int -> (a->b) -> [a] -> [b]
map_farm_thr thr = if noPe > thr then map_farm_1 else map_farm

map_farm_1 devotes a separate processor to the main process, while map_farm_thr
behaves like map_farm or map_farm 1 depending on a threshold parameter.
These variants can be defined in a similar way for all the skeletons. In some of
the algorithms presented in Section 4.4 the threshold variant of the skeletons
has been used.

Self-service Farm Implementation. Sometimes duplicating work helps re-
ducing the total execution time, as communications can be reduced a lot. In the
map case, when the evaluation of the task list is cheaper than communicating
the evaluated list, it is better to allow the workers to evaluate the list of tasks
on their own and to select their part of it. This can be done by providing the
workers with parameters instead of input channels:

10

ssf :: Transmissible b =>
Int -> (Int->[al->[[al]) -> ([[b]1->[b]) -> (a->b) -> [a] -> [b]
ssf np shuffle unshuffle f tasks
= shuffle [(worker f ts) # () | ts <- unshuffle np tasks]
where worker f tasks = process () -> map f tasks

The difference between the cost model of map_farm and the one of map_ssf is
that now tpserr and typpackr disappear, and that the cost for unshuffling the
tasks is attributed to the workers:

tmap_ssf = Linit + tworker + Lﬁnal

Linit = Ptereate + o

Lﬁnal = 0+ tunpackO + tshuﬁie

tworker = tunshuﬁ:le’.%.l + t# + |—?—| (tf + tZDGCkO)

Replicated Workers Implementation. The load balance obtained using
the farm or self-service schemes can be poor in three cases: (1) When the
granularity of the tasks is not uniform; (2) when the processors’ architecture is
irregular; and (3) when the programs share CPU time with other programs in
the same processors.

In all these three situations distributing work on demand helps to improve
substantially the load balance. A new task is assigned to a process only when
it has finished its previous task. This idea gives rise to the replicated workers
skeleton [KPRO1]. Initially, the manager assigns one or more tasks to each of
the workers. By assigning several tasks, idle time between tasks is minimized.
Each time a worker finishes a task, it sends an acknowledgment message to the
manager including the result, and then a new task (if any is available) is assigned
to that process. The computation finishes when the manager has received all
the results.

The programmer cannot predict in advance the order in which processes are
going to finish their works, as this depends on runtime issues. By using the
process merge, acknowledgments from different processes can be received by
the manager in the order in which they arrive. Thus, if each acknowledgment
contains the identity of the sender process, the list of merged results can be
scrutinized to know who has sent the first message, and a new task can be
assigned to it. Notice that this approach can not be used in a purely functional
language, as process merge is not functional (see Section 4.2.2).

The skeleton receives as input parameters (1) the number of worker processes
to be used; (2) the size of workers’ prefetching buffer; (3) the worker function;
and (4) the list of tasks.

rw :: (Transmissible a,Transmissible b) =>
Int -> Int -> (a -> b) -> [a]l -> [b]
rw np prefetch f tasks = results where
results = sortMerge outsChildren
outsChildren = [(worker f i) # inputs |
(i,inputs) <- zip [0..np-1] inputss]

11

inputss = distribute tasksAndIds
(initReqs ++ (map owner unordResult))

tasksAndIds = zip [1..] tasks

initRegs = concat (replicate prefetch [0..np-1])

unordResult = merge # outsChildren

distribute [] _ = replicate np []

distribute (e:es) (i:is) = insert i e (distribute es is)
where insert 0 e ~(x:xs) = (e:x):xs

insert (n+l1) e “(x:xs) = x:(insert n e xs)

data (Transmissible b) => ACK b = ACK Int Int b
worker :: (Transmissible a, Transmissible b) =>
(a->b) -> Int -> Process [(Int,a)] [ACK b]
worker f i = process ts -> map f’ ts
where f’ (id_t,t) = ACK i id_t (f t)

Notice that the output of the list of workers (outsChildren) is used in two
different ways: (i) merge is applied to it in order to obtain a list unordResult
containing the order in which the results are generated, so that it can be used by
distribute to distribute a new task to each processor as soon as it finishes its
previous tasks; and (ii) it is used to obtain the final result by applying sortMerge
to it, where sortMerge is a simple Haskell function not shown which merges the
workers lists (each of them already sorted) producing a single list sorted by task
identity. For this reason, the skeleton is completely deterministic seen from the
outside. In fact, ignoring the first two parameters, its semantics is that of map.
In order to implement map, a worker is created for every processor, and a prefetch
parameter of 2 is used, as this value uses to be the best one in general. The
reason is that, with a smaller value communications and computations cannot,
overlap, and with bigger values the load balance could be worse, as there are
more tasks not distributed on demand.

map_rw :: (Transmissible a,Transmissible b) => (a->b) -> [a] -> [b]
map_rw = rw noPe 2

The cost model for map_rw is the following:

tmap_rw = Linit + tworker + Lﬁnal

Linit = P(tcreate + tpack[+ tdistributel) + 0
Lﬁnal = 0+ tunpackO + tsortMerge1

tworker - t# + %(tunpackl + tcomp + tpackO)
teomp = % zi\il tr:

The considerations made for the map_farm cost model are also applicable here.
In the formula, tf, represents the sequential CPU time for function f when
applied to task ¢. In tgstribute, We consider accumulated the previous costs of
zip, concat and replicate functions for producing one element. Notice that
the ceiling operation has disappeared from %. We are assuming a perfect load
balance, and it can be considered that every worker receives the exact average
number of tasks, each one with an average computing cost comyp-

12

Fixed Shared Data Structures. When there exists a fixed data structure
that has to be shared by all the tasks, it does not make sense to send such a
structure each time a new task is released. Instead, it should be sent only once to
each process, and all the tasks of the same process should share it. This cannot
be done with the implementations presented so far, but the solution is quite
simple: the new implementations need an extra parameter (the shared data)
that is sent to the workers through an independent channel. In the case of the
replicated workers the implementation only requires the following modification:

rw_FD :: (Transmissible a,Transmissible b, Transmissible fixed) =>
Int -> Int -> fixed -> (fixed -> a -> b) -> [a] -> [b]
rw_FD np prefetch fixed f tasks = results where

outsChildren = [(worker_FD f i) # (fixed,inputs) |
(i,inputs) <- zip [0..np-1] inputss]

worker_FD :: (Transmissible a, Transmissible b, Transmissible fixed) =>
(fixed -> a -> b) -> Int -> Process (fixed,[(Int,a)]) [ACK b]
worker FD f i = process (fixed,ts) -> map f’ ts
where f’ (id_t,t) = ACK i id_t (f fixed t)

and these modifications are analogous for farm. The only difference with rw
is that now it is necessary to have an extra parameter for the fixed structure,
and it has to be used appropriately. The difference in the cost models is that
the workers have now an extra cost unpacking the shared data, while the cost
of packing it P times has to be added to L;,;;. The advantage is that now the
cost associated to tpecrr and tuppackr Will be smaller, as the tasks are smaller
because the full fixed data structure is not sent with each task.

Map and Reduce

The sequential specification of this classical scheme is a combination of a map
and a fold function:

mr :: (a ->b) > (b->b->b) ->b->[al] ->b
mr f g e tasks = foldl g e (map f tasks)

where the first parameter is the function f to be applied by the map, while
the second is a binary commutative and associative function g with a neutral
element e.

Farm Implementation. In a straightforward approach this scheme could be
parallelized by first applying in parallel the map step, and then folding the re-
sults, thereby using the strict variant foldl’ of fold. More parallelism and less
communication can be achieved, because the folding parameter g is an associa-
tive and commutative function with neutral element e. The results computed in
each processor can be folded together locally before the global folding is done,
i.e. the folding step is also parallelized, and the communications are reduced, as
only one element is returned by each worker, instead of a sublist.

13

mr_PM :: (Transmissible a, Transmissible b) =>
Int -> (Int -> [a] -> [[a]]) ->
(a->b) > (b ->b->>b) =>b > [al] >b
mr_PM np unshuffle f g e tasks = foldl’ g e results
where results = [(worker_PM f g e) # mtasks
| mtasks <- unshuffle np tasks] ‘using‘ spine
worker PM f g e = process tasks -> foldl’ g e (map f tasks)

Notice that an unshuffle function is provided, but not the corresponding
shuffle: due to the associative and commutative properties of the parameter
function g, the order in which the results are combined does not matter.

Self-service Implementation. In many situations (see e.g. Section 4.4.2) it
can be done even better in case the list of tasks can be easily generated by each
worker. In those cases, the self-service approach can be used. Thus, each worker
can select its tasks, so that the communications are reduced:

mr_SSI :: Transmissible b => Int -> (Int -> [a] -> [[a]]) ->
(a=>b) -> (b->b->b) -> b -> [a] -> b
mr_SSI np unshuffle f g e tasks = foldl’ g e results
where results = [(worker f g e mtasks) # ()
| mtasks <- unshuffle np tasks] ‘using‘ spine
worker f g e tasks = process () -> foldl’ g e (map f tasks)

Asin the map case, the number of processes depends on the number of processors
available. A predefined unshuffle function is provided to distribute the inputs
in a round-robin fashion:

map_reduce_ssi :: Transmissible b => (a->b) -> (b->b->b) -> b -> [a] -> b
map_reduce_ssi = mr_SSI noPe unshuffle

unshuffle :: Int -> [a] -> [[all
unshuffle n xs = [takeEach n (drop i xs) | i <- [0..n-1]]
where takeEach :: Int -> [a] -> [a]
takeEach n [] = []
takeEach n (x:xs) = x : takeEach n (drop (n-1) xs)

The cost model for map_reduce_ssi is the following:

tmap_reduce_ssi = Lim't + tworker + Lﬁnal

Linst = Plereate + d

Lﬁnal = 0+ tunpackO + tfoldlp

tworker = t# + textract + (%-l (tf + tpackO) + tfoldl.%.l

4.3.3 Task Parallel Skeletons

In contrast to data-parallel skeletons where the source of parallelism is the dis-
tribution of data between processors and the application of the same operation
to all portions of the data, here the source of parallelism is the decomposition

14

of a task into different subtasks which can be done in parallel. These subtasks
need not be identical.

The first skeleton we describe in this section, divide and conquer, is the
parallel counterpart of the well-known sequential scheme. The parallelism comes
from the fact that the different subtasks into which a given task is split, can
be solved in parallel. In the second skeleton, the pipeline, different stages of a
sequential computation can be done in parallel if they work on different elements
of a continuous stream of data.

Divide and Conquer

The sequential specification of this scheme is:

dc :: (a => Bool) -> (a =>b) -> (a -> [a]l) -=> (a => [b] -> b) -> a -> b
dc trivial solve split combine x

| trivial x = solve x

| otherwise = combine x children

where children = map (dc trivial solve split combine) (split x)

Notice that the resulting call tree may be non-homogeneous, and that trivial
solutions may appear at any level of the tree.

Naive Implementation. The easiest way to parallelize the dc scheme is to
replace map by map_par. The following implementation uses this approach, but
stops the parallel unfolding at a given level d. A dynamic tree of processes is
created with each process connected to its parent. The integer parameter d de-
termines the maximum level after which no more child processes are generated,
and the sequential version is used instead. The implementation is as follows:

dc_par :: (Transmissible a, Transmissible b) =>
Int -> (a->Bool) -> (a -> b) -> (a -> [a]) ->
(a => [b] -=>Db) ->a ->b
dc_par O trivial solve split combine = dc trivial solve split combine
dc_par d trivial solve split combine x
| trivial x = solve x
| otherwise = combine x c
where children = map_par (dc_par (d-1) trivial solve
split combine) (split x)

Notice that in this implementation there is no single manager process, as it hap-
pened in previous skeletons, because every child is a parent process of the next
process level. The cost model for this implementation should use a distribution
function of processes into processors and another distribution function of gran-
ularities into processes. The first distribution is known, as it only depends on
the RTS, but the second one depends on the concrete problem. Thus, the cost
model should be able to work with any distribution function. Unfortunately,
this is a hard problem in the general case, and the predictions that could be
obtained would not be very accurate.

15

Farm and Replicated Workers Implementations. These implementa-
tions use the farm and rw implementations of map, in order to have a better
control over process granularity and distribution, and to achieve a better load
balance. Notice that, by using rw the load balance will be improved, even if
the granularities of the different tasks are different. Also, the process creation
overhead will be decreased, as only one process per processor will be created.
The original task is split up to a given depth and, a subtask is created for every
subtree at this depth. The list of subtasks is given to a map_farm (or better
a map._rw) skeleton in which the function of the workers is just the sequential
algorithm. In order to be able to appropriately combine the results returned
by the parallel processes, an explicit tree of arguments must be generated when
splitting the initial task. We only present the dc_rw skeleton. The corresponding
dc_farm skeleton can be obtained by replacing map_rw by map_farm. Functions
generateTasks and combineTop are simple Haskell definitions not shown.

dc_rw :: (Transmissible a,Transmissible b) => Int ->
(a ->Bool) -> (a ->b) -> (a ->[al) -> (a ->[b] ->b) -> a -> b
dc_rw d trivial solve split combine x
= combineTop combine levels results
where (tasks,levels) = generateTasks d trivial split x

results = map_rw thr (dc trivial solve split combine) tasks
data Tree a = Node a [Tree al
generateTasks :: Int -> (a -> Bool) -> (a -> [a]) -> a -> ([a], Tree a)

combineTop :: (a -> [b] -> b) -> (Tree a) -> [b] -> b

The cost models for these implementations of dc are mainly those of map_rw
and map_farm (see Section 4.3.2), adding the overheads of creating tasks and
combining results in the parent process. To use the models, we must know the
number N of tasks generated and the average computation time ¢.yp,p, Which
can be easily obtained from the sequential time. In Section 4.4.3 both dc_par
and dc_rw are used and compared for a typical divide and conquer algorithm.

Pipeline

A pipeline consists of a list of stages, where each stage applies a different function
to the results obtained in the previous stage. This can be expressed by means
of a folding function:

pipe :: [[al -> [al]l -> [a]l -> [al
pipe = foldll (flip (.))

In order to extract parallelism, we have forced in the type that each function
must consume and produce a list,.

Implementation. A naive parallelization of this scheme instantiates a differ-
ent process to evaluate each of the pipeline stages. This can be expressed in
Eden in several ways. For instance, in the following one, each process in the
pipe creates its successor:

16

=0 - W

Figure 4.2: Topology generated with pipe naive (left), and the desired pipeline
using pipeD (right)

pipe_naive :: Transmissible a => [[a]l->[al] -> [a] -> [a]
pipe_naive fs xs = (ppipe fs) # xs

ppipe :: Transmissible a => [[a]l->[a]]l -> Process [a] [a]
ppipe [f] = process xs -> f xs
ppipe (f:fs) = process xs -> (ppipe fs) # (f xs)

However, this definition has a subtle problem: It does not achieve the desired
topology because the last process of the pipe cannot send the values directly
to the main process, as topologies in Eden are hierarchical by default (see Fig-
ure 4.2(left)). The solution is the use of Eden’s dynamic channels facility (see
Section 4.2) to establish a direct data connection between the last and the main
process. The main process creates a dynamic channel that will be used by the
last process for sending the final values. Intermediate processes just forward the
name of that channel to the next process. The created topology is then that
of Figure 4.2(right). The similarities between both versions are remarkable. In
fact, in [PRS01] we give a method that, given as specification a hierarchical pro-
gram using only process abstractions and instantiations, derives non-hierarchical
implementations using dynamic channels.

pipeD :: Tramsmissible a => [[a]l->[al]l -> [a] -> [al]
pipeD [f] xs = process xs -> f xs
pipeD fs xs = new (cn,c) let something = (ppipeD fs) # (xs,cn) in c

ppipeD :: Transmissible a => [[a]->[al]l -> Process ([a], ChanName [a]) ()
ppipeD [f] = process (xs,cn) -> cn !'*x (f xs) par ()
ppipeD (f:fs) = process (xs,cn) -> (ppipeD fs) # (f xs,cn)

The cost model for pipeD is the following;:

tpipe_naive = Linit + tworker + Lﬁnal
Linis = F(tcreate + t# + tpack] + 6)
Lﬁnal = 0+ tunpackO

tworker [%]N(tunpackl + max{tcompi}f‘zl + tpackO)

where F' is the number of functions in the pipe, NV the length of the input list
and teomp, the cost of function f; for processing a single element. We assume
F > P and the round-robin mode for the RTS.

17

4.3.4 Systolic Skeletons

Systolic programs are those in which processes alternate parallel computation
and global synchronization steps. Depending on the concrete problems, they can
be classified as data parallel or task parallel. We first present the iterUntil
skeleton, that iterates a parallel computation until a convergence condition is
met, and then the torus and ring skeletons, in which processes communicate
respectively using a torus or a ring topology. In these skeletons, the sequential
specification is the same program as the parallel one, replacing the Eden runtime
value noPe by 1.

Iterate Until

This topology is appropriate for parallel algorithms in which a manager iterates
until some convergence condition is met. At each iteration, a piece of work
is given to each of a set of identical worker processes and a result is collected
from each of them. There are as many workers as processors. The difference
with a farm or a rw skeleton is that the tasks sent at each iteration depend
on the results of the previous one. Thus, a new iteration cannot start until
the whole previous iteration has finished. A typical example of this kind of
parallel algorithms is solving linear systems by the conjugate gradient or the
Jacobi relazation methods [Qui94].

The manager is initialized with data of type inp (the problem input) and a
manager local state of type ml. Each worker is initialized with data of type wl
(worker local state) and one initial task of type t. At each iteration, each worker
computes a sub-result of type sr which is transmitted to the manager, and a
new local state which is used for its next computation. The manager combines
the sub-results and, either produces a new set of tasks and a new local manager
state, or it terminates with a result of type r. The Eden skeleton receives the
following parameters:

e A split function to be used by the manager in order to compute the
initial state and the initial task of each worker, and its own local state. It
receives an integer telling into how many pieces the input should be split.

e The function wf to be used by the workers: given a local worker state and
a task, it generates a sub-result and a new local state for the next round.

e The function comb to be used by the manager to combine the sub-results
of the workers: it produces either the final result or a new list of tasks and
a new local manager state for the next round.

e The input data of the problem, of type inp.

The Eden source code is the following:

18

iterUntil :: (Transmissible wl, Transmissible t, Transmissible sr) =>

(inp -> Int -> ([wl],[t],ml)) -> -- split function
(wl >t -> (sr, wl)) -> -- worker function
(ml -> [sr] -> Either r ([t],ml)) -> -- combine function
inp -> r
iterUntil split wf comb x = result
where (result, moretaskss) = manager comb ml (transpose’ srss)
srss = map_par (worker wf) (zip wlocals taskss)

taskss transpose’ (initials : moretaskss)

split x noPe

(wlocals,initials,ml)

manager :: (ml -> [sr] -> Either r ([t],ml)) -> ml -> [[srl]l -> (r, [[t]])
manager comb ml (srs : srss) = case comb ml srs of
Left res -> (res, [1)
Right (ts,ml’) -> let (res’,tss) = manager comb ml’ srss
in (res’,ts:tss)

worker :: (wl -> t -> (sr, wl)) -> (wl, [t]) -> [sr]
worker wf (local, [1) = []
worker wf (local,t:ts) = sr : worker wf (local’,ts)

where (sr, local’) = wf local t
transpose’ = foldr (mzipWith’ (:)) (repeat [1)

mzipWith’ f (x:xs) “(y:ys) =f xy
mzipWith’ f _ = [

The cost model is the following:

titerUntil = Linit + I tworker + (I -]-)tparent + Lﬁnal
Linit - P(tcreate + tpackl) +0+ t#

Lﬁnal = P tunpackO + teombine

tparent = P tunpackO + tcombine +P tpack] + J
tworker = tunpack] + tcompW + tpackO +)

where now the computing costs of the workers and of the parent strictly alternate
in the critical path. Parameter I is the number of iterations of the algorithm.

Torus

A torus is a well-known two-dimensional topology in which each process is con-
nected to its four neighbors. The first and last processes of each row and column
are considered neighbors. In addition, each node has two extra connections to
send and receive values to/from the parent. At each round, every worker re-
ceives messages from its left and upper neighbors, computes, and then sends
messages to its right and lower neighbors. Eden’s implementation uses lists
instead of synchronization barriers to simulate rounds. It also uses dynamic
channels to provide direct connections between workers. The torus function
defined below creates the desired toroidal topology by properly connecting the

19

inputs and outputs of the different ptorus processes. Each process receives an
input from the parent, and two channel names to be used to send values to its
siblings, and produces an output to the parent and two channel names to be
used to receive inputs from its siblings. The whole source code of the skeleton
is the following:

torus :: (Transmissible a,Transmissible b,Transmissible c,Transmissible d)
=> Int -> (Int -> ¢ -> [[c]]) -> ([[d]] -> d) ->
((c,[al,[b]) -> (d,[al,[b])) -> c > d
torus np dist comb f input = comb outssToParent where
toChildren = dist np input

outss = [[(ptorus f) # outAB | outAB <- outs’] | outs’ <- outss’]
(outssToParent,outssA,outssB) = unzip3 (map unzip3 outss)

outssA’ = mzipWith (:) nrows (map last outssA) (map init outssA)
outssB’ = last outssB : init outssB

outss’ = mzipWith3 mzip3 toChildren outssA’ outssB’

nrows = length toChildren

-- each individual process of the torus
ptorus ::(Transmissible a,Transmissible b,Transmissible c,Transmissible d)
=> ((c,[al,[b]) -> (d,[al,[b])) —->
Process (c,ChanName [a],ChanName [b])
(d,ChanName [a],ChanName [b])
ptorus f = process (fromParent,outChanA,outChanB) -> out
where out= new (inChanA, inA) new (inChanB, inB)
let (toParent,outA,outB) = f (fromParent,inA,inB)
in outChanA !* outA par outChanB !* outB par
(toParent,inChanA, inChanB)

mzip3 (x:xs) “(y:ys) “(z:zs) = (x,y,z) : mzip3 xs ys zs
mzip3 _ _ _ = []

Notice that the size of the torus is a parameter that will usually depend on
the number of available processors (the value of np will usually be |v/noPe]),
and that a function dist is used to distribute the input data to the ptorus
processes, while comb is used to produce the final output from the subresults
of the torus. The third parameter of the skeleton is the worker function, which
receives an initial datum of type c from the parent, a datum [a] from the left
neighbor and a datum [b] from its upper neighbor, and produces results [a]
and [b] for its neighbors and a final result d for its parent. Functions mzip3,
mzipWith and mzipWith3 are just lazier versions of functions of the zip family,
the difference being that our functions use irrefutable patterns for most of its
parameters, as shown for mzip3.
The cost model is the following:

tiorus = Linit + tworker + Lﬁnal

Linit = P(tcreate + tpackC’) + taist +)
Lﬁnal = 0+P tunpackD + teomb
tworker = t# + tunpackC + tcomp+

N(tpackA + tpackB + tunpackA + tunpackB + tcomp) + tpackD

20

N is the number of rounds each worker does, i.e. the maximum length of lists
[a] and [bl, and t.omp is the cost of the worker function in each round. It is
assumed that P = n x m, i.e. each worker has a separate processor. We are
also assuming that a separate processor is devoted to the manager, that is, the
number of processors is P + 1.

Ring

A (unidirectional) ring can be considered a particular case of a torus, where
each process —apart from sending and receiving values to/from the parent—
is connected only to two neighbors: the previous link, from which it receives
messages, and the next link, to which it sends messages. By using dynamic
channels to provide direct connections between links, the ring function creates
the desired topology. Each pring receives an input from the parent, and a
channel name to be used to send values to the next link, and produces an
output to the parent and a channel name to be used to receive inputs from the
previous link. The whole source code of the skeleton is as follows:

ring :: (Transmissible a,Transmissible b,Transmissible c) =>
Int -> (Int -> a -> [a]) -> ([b] -> b) ->
((a,[c]) => (b,[c])) -> a ->Db
ring n dist comb f input = comb toParent where
(toParent,nexts) = unzip outss
outss = [(pring f) # ins | ins <- inss]
inss mzip toChildren prevs
toChildren = dist n input
prevs last nexts : init nexts

-- each individual process in the ring
pring ::(Transmissible a,Transmissible b,Transmissible c) =>
((a,[c]) -> (b,[c])) -> Process (a,ChanName [c]) (b,ChanName [c])
pring f = process (fromParent,nextChan) -> out
where out= new (prevChan, prev)
let (toParent,next) = f (fromParent,prev)
in nextChan !* next par (toParent,prevChan)

The number of links is provided by the programmer as a parameter of the skele-
ton. Similarly to the torus, a function dist is used to distribute the input data
to the pring processes, while comb combines in a final result the outputs pro-
duced by each link. The computation to be performed at each link is represented
by a function f, which receives an initial datum of type a from the parent and
a datum [c] from the previous link and produces output [c] for the next link
and a local result of type b for the parent. Function mzip is just a lazier version
of function zip.

21

The cost model for the ring is very similar to the one for the torus:

tring = Linit + tworker + Lﬁnal

Linit = P(tcreate + tpackA) + taist + 0
Lﬁnal = 6+P tunpackB + teomb
tworker - t# + tunpackA + tcomp

+N(tpackC + tunpackC + tcomp) + tpackB

where P is the number of links (each in a separate processor) and N is the
number of rounds each link does, i.e. the maximum length of lists [c], and
tcomp is the cost of the worker function in each round.

4.4 Application Parallel Programming

In this section we present the results obtained for several examples, which
are typical instances of the previously defined skeletons. For each example,
both actual and predicted relative speedups are shown. The experiments have
been performed in a 64-processor Beowulf cluster at the University of St. An-
drews. Nodes are 450MHz Pentium IT running Linux RedHat 5.2, with 348MB
of DRAM and connected through a CISCO 2984G full duplex 100Mb/s fast
Ethernet switch, being the latency § = 142us. So, it is a low cost environment
with high latencies. Eden RTS was running on top of PVM 3.4.2. All the pro-
cessors of the Beowulf cluster are equal, so that the main potential sources of
load imbalances come from the algorithms. Due to administrative reasons, it
has not been possible to use all the processors in the tests.

4.4.1 Ray Tracing — Map

Given a scene consisting of 3D objects, and given the position of the camera,
a ray tracer calculates a 2D image of the scene. For every pixel of the output
image, the ray tracer shoots a ray into the scene and tests whether it impacts
with any object of the scene. When an impact is found, the ray is reflected and
the colour of the intersection point is computed based on the strength of the
ray and on the texture of the object’s material. The code is based on the Id
version, that is part of the Impala suite [Imp01] of parallel benchmarks. The
program was translated to Haskell by the group developing the GPH language.

The main function of the program is ray, which receives as parameters the
size of the window x X y and the scene world consisting of a list of spheres. The
computation is performed by two nested maps, applying a function tracepixel
to each of the pixels of the window. Function camparams computes the param-
eters depending on the camera position:

ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray x y world = map (do_line world) sizes_y
where do_line :: Int -> [((Int,Int), Vector)]
do_line world i = map (\ j -> ((i,j), f world i j)) sizes_x
sizes_x = [0..x-1]

22

30

"ray W ———
predicted_rw -z
linear speedup.<— |

25 -

20

15 +

Speedup

10

5

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
number of PEs

Figure 4.3: Speedups of the ray tracer

sizes_y = [0..y-1]
f world i j = tracepixel world i j firstray scrnx scrny
(firstray, scrnx, scrny) = camparams X y

This algorithm can be easily parallelized exploiting the outer map of the
main function, and creating a task for each line of the window. Notice that the
scene world is needed in all the tasks. Thus, we should use the versions of the
map skeleton which incorporate an extra fixed parameter, to guarantee that the
scene is communicated only once per processor:

ray x y world = map_rw_FD world do_line sizes_y where ...

The speedups obtained for a 350 x 350 window and a scene of 640 spheres
can be seen in Figure 4.3. The sequential execution time was 176.99 seconds.
The speedups are quite good, the only inefficiency being a sequential bottleneck
of 1.3 seconds while distributing tasks and combining the results.

4.4.2 FEuler Numbers — Map and Reduce

The Euler number of a given value z is the number of integers smaller than z
that are relatively prime to z. We are interested in computing the sum of the
Euler numbers of the first n numbers. This problem has recently been proposed
in [TLPO1] to compare the way in which different parallel languages based on
Haskell are used. The sequential version is trivial:

sumEuler :: Int -> Int
sumEuler n = sum (map euler [n,n-1..1])

euler :: Int -> Int
euler x = length (filter (relprime x) [1..(x-1)1)

Notice that the problem fits the map and reduce scheme, as the euler function
is mapped while sum folds all the results into a single one. Moreover, the list

23

30

' s‘umE‘uIerﬁ‘ss 8000 ‘7‘
predicted_ss 8000 -
linear speedup.-

25 -

20

15 +

speedup

10

5

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
number of PEs

Figure 4.4: Speedups of sumEuler

of tasks can be trivially computed by each worker, reducing the communication
overheads. Therefore, the parallelization is straightforward:

sumEuler n = map_reduce_ss euler (+) 0 [n,n-1..1]

The granularity of the euler function depends directly on the value of the
input parameter. Thus, it is important to take care of the distribution of tasks
between processes. The granularity decreases as the input value decreases. So,
unshuffling the tasks in a round robin fashion gives a good distribution, as
Figure 4.4 shows. The measurements were performed for a problem size of
8000, and the sequential time was 80.39 seconds. The only inefficiency in the
parallelization is the time needed to create and initialize the worker processes,
that is 0.015 seconds per processor.

4.4.3 Karatsuba Algorithm — Divide and Conquer

The Karatsuba algorithm [HS78] computes the product of two large integers
using a divide and conquer approach. Given n as the length of the integers,
the complexity of the naive strategy for multiplying them is in O(n?), while the
Karatsuba algorithm computes it in O(nt°923).

If two large integers = and y represented in base b are to be multiplied, the
algorithm works as follows:

e Let n be half of the length of the longest of z and y (using the correspond-
ing base representation).

e Letzy = z/b", 22 = xmodd”, y; = y/b" and y» = y mod b™.

e letu = xy %y, v = Taxys, w = (z1422) (yl +y2).

24

40

kara_rw 8000 —+—
kara_par 8000 ----x--
35 r kara_rw_predicted 8000 1
linear speedup

30 -

25

20

speedup

15 + N
PN

PV

P SV S

10 et

5

0 S L L L L L L L L L L L L L L L L L
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38
number of PEs

Figure 4.5: Speedup for the Karatsuba algorithm

e The result of the multiplication is u * b>*" 4+ (w — u — v) * b" + v.

Notice that to obtain x1, x2, y1 and y» it is not necessary to perform any division,
it is enough to cut the lists representing = and y. Analogously, the multiplication
with b” and b%*” do not need any product multiplication, but only adding zeros
to the corresponding long integer. Therefore, only three multiplications are
needed, that is, only three subproblems are generated when splitting a problem.
As three subproblems of half the complexity are generated, and combining the
subresults is in O(n), this leads to a complexity in O(n!°923).

This algorithm fits a divide and conquer scheme, where the granularity of
the subtasks can be varying, as the three multiplications are possibly applied to
integers of different lengths. The implementation of the Karatsuba algorithm in
terms of the divide and conquer skeleton is as follows, where the implementation
of the non-shown functions follows the above explanation.

type MyInteger = [Int]
karat :: Int -> MyInteger -> MylInteger -> MyInteger
karat depth isl is2 = dc_rw depth trivial solve split combine (isl,is2)

Both the dc_rw and the dc_par version of the divide and conquer skeleton
have been tested for the same input data, whose sequential execution time is
440 seconds. The speedups predicted and obtained can be seen in Figure 4.5.
As expected, the naive implementation of the skeleton is worse and also more
irregular than the other, the main reason being that the load balance is poorer
and more random. Moreover, the overhead for creating processes is greater.
The prediction of the dec_rw behavior is quite accurate. No prediction is given
for the dc_par version owing to the lack of an accurate cost model.

4.4.4 Conjugate Gradient - Iterate Until

The gradient conjugate method is an iterative method used to find approximate
solutions of linear systems Az = b in which the coefficient matrix A is positive
definite. In each iteration, the current solution z is improved using the function

25

2(t) = z(t—1) + s(t)d(t)

where d is the direction vector to the solution, and s is the size of the scalar
step. Each iteration requires the following computations:

(1) g(t) = Az(t—1) — b

)T g(t
@) dit) = —g(t) + AU a - 1)
d(t)Tg(t
(3) s) = _d(t()g“Agg(zs)

@) z(t) = 2(t—1) + s(t)d(t)

where in the first iteration z(0), d(0) and g(0) are initialized to the zero vector,
and ¢(0) to —b. With this method, the values of = are guaranteed to converge
in at most n iterations, being n the number of equations of the system. As each
step is in O(n?), the algorithm is in O(n?).

This algorithm fits well the iterUntil skeleton: It consists of several steps;
each step can be parallelized; and the current step must completely finish before
starting the next one.

The Eden code parallelizes the product of A and z and also the product of
A and d, as these are the time consuming parts of the algorithm. So, in each
iteration of the algorithm, there are two steps to be performed in parallel. This
can be included in the iterUntil skeleton by using an Either type to mark
which step of the iteration is to be computed. The source code is the following;:

type Input = (Matrix,Vector,Vector,Vector,Vector)

type Task = Either Vector Vector --dor x

type SubResult = Either Vector Vector -—Ador Ax

type LocalW = (Matrix,Vector) -- A_i and b_i

type LocalM = (Vector,Vector,Vector,Double,Int) -- d,g,x,gg,iterations
cg :: Int -> Matrix -> Vector -> Vector

cg ab=cg’” abnds b (map negate b) where nOs = replicate (length b) O
cg’ abxdg = iterUntil split f_it comb (a,b,x,d,g) where
split :: Input -> Int -> ([LocalW], [Task],LocallM)
split (a,b,x,d,g) np = (splitIntoN np (zip a b), replicate np (Left d),
(d,g,x,prVV g g,length b))
f_it :: LocalW -> Task -> (SubResult,LocalW)

f_it 1 t = (f_it’ 1 t,1) -- The local state does not change
f_it’ (ai,bi) (Right x) = Right (zipWith (=) (prMV ai x) bi) -- g
f_it’ (ai,bi) (Left d) = Left (prMV ai d) -—Ad

comb :: LocalM -> [SubResult] -> Either Vector ([Task],LocalM)
comb (d,g,x,gg,cont) srs@(Left _:_) = ...
comb (d,g,x,gg,cont) srs@(Right _:_) = ...

26

"cg 600 ——
predicted 600 ---------
linear speedup —— |

0 2 4 6 8 10 12 14 16
number of PEs

Figure 4.6: Speedups of the conjugate gradient algorithm

where prVV multiplies vectors, and prMV multiplies a matrix and a vector. Func-
tion comb performs the corresponding computations depending on the step of
the iteration. That is, perfoms the computations (1) and (2) of the specification
of the problem, or the computations (3) and (4).

Figure 4.6 shows the speedups obtained for a system of 600 equations, the
sequential execution time being 684 seconds. The speedups do not scale well.
The curve flattens out for more than four processor elements. The reason for
these results is the bad computation-communication ratio. In each iteration,
the main process communicates O(n * p) values, while the computation of the
workers are in O(n?/p). Thus, the communication costs increase with more
processor elements while the computation decreases. Good speedups can only
be expected if n > p2.

The reasons why the speedups are worse than in other languages are two:
(1) the packing and unpacking routines of Eden are not optimized yet, so the
communications overheads are comparatively higher; and (2) there are not mul-
ticasting facilities to reduce the communications when a processor needs to send
the same information to several processors. We hope to overcome these two lim-
itations in the near future.

4.4.5 Matrix Multiplication — Torus

The product of an m X n matrix (M1) and an n x p matrix (M2), yields an m x p
matrix (M), where M(i,5) is the dot product of the i-th row of M1 and the j-th
column of M2:

type Matrix = [[Int]]

prMM :: Matrix -> Matrix -> Matrix

prMM ml m2 = prMMTr ml (transpose m2)

prMMTr m1 m2 = [[sum (zipWith (*) row col) | col <- m2 1 | row <- mi]

Each element of the resulting matrix can be computed in parallel. If the size
of the matrices is n X n, and p processors are available, a first approach could

27

be to generate p tasks, each one evaluating n/p rows of the resulting matrix.
As the granularity of the tasks is very regular, the corresponding Eden program
uses the simple map_par skeleton:

prMM_naive :: Matrix -> Matrix -> Matrix
prMM_naive ml m2 = concat out where

out = map_par (uncurry prMMTr) (zip (splitIntoN noPe ml) (repeat m2’))
m2’ = transpose m2

where splitIntoN n xs splits xs into n nearly equal size sublists.

The communications of the main process are in O(n?#p) and the computation
of each process will be in O(n?®/p). Note that this is a similar ratio like the one
for the conjugate gradient and so the speedup curve will rapidly flatten out for
a fixed input size when increasing the number of processors (see Figure 4.8).

Gentleman’s algorithm [Gen78] can be used to decrease the communication
overhead. The matrices are distributed block-wise to the processes which are
organized in a torus topology, so that initially each process receives only a
portion of the inputs, and it obtains the rest of them from its neighbors: The
sub-matrices of the first matrix are rotated from left to right in the torus,
while those of the second matrix are rotated from top to bottom. Each process
computes a rectangular block of the final matrix, as depicted in Figure 4.7. The
algorithm needs ,/p iterations, where p denotes the total number of processes in
the torus. In each iteration, a process computes the product of its sub-matrices,
adds this element-wise to its intermediate result block and communicates its
sub-matrices with its neighbor processes.

To instantiate the torus skeleton one only needs to define the size of the
torus —i.e. [\/p], to split the matrices into blocks, and to define the function to
be applied. The node function just constructs a list of block multiplications —
one for each pair of blocks it receives— and then adds up all the products. The
number of multiplications performed by each process is the size of the torus.

prMM_torus :: Matrix -> Matrix -> Matrix
prMM_torus ml m2 = torus torusSize split combine (mult torusSize) (ml,m2)
where torusSize = (floor . sqrt . fromInt) noPe

combine = concat . (map (foldr (zipWith (++)) (repeat [1)))
split = ...

-- Function performed by each worker

mult :: Int -> ((Matrix,Matrix), [Matrix], [Matrix]) ->

(Matrix, [Matrix], [Matrix])
mult size ((sml,sm2),smls,sm2s) = (result,toRight,toBottom)
where toRight = take (size-1) (sml:smils)
toBottom = take (size-1) (sm2’:sm2s)

sm2’ = transpose sm2
sms = zipWith prMMTr (sml:smls) (sm2’:sm2s)
result = foldll’ addMatrices sms

where split is a simple Haskell function that splits the matrices into blocks
and shifts them appropriately to have matching torus inputs.

28

BT T T T T T T T T T T T T T
prMM_naive 600 —+—
prMM_torus 600 ----x----

prMM_naive_predicted 600

20 | PrMM_torus_predicted 600 --------- il

linear speedup

EEEE Cm00| [Omo0 -l
Do00| [DCm00|- 0000
O000| [Cm00|— 0000
0000 [Dm00| 0000

speedup

P ————

10

Figure 4.7: Matrix multiplica-
tion using blocks

0 |
0 2 4 6 81012141618 202224 26283032 343638404244
number of PEs

Figure 4.8: Speedups of matrix multiplication

The computation of each process is still in O(n?/p), while the communication
overhead of the main process reduces to O(n?). The communication in each
process is however now in O(n?/,/p). Another drawback is that a perfect square
number of processes is needed to form the torus.

Figure 4.8 shows the speedup profiles for the two Eden versions of matrix
multiplication using square matrices of size 600 x 600, the sequential execution
time being 221 seconds. It can be seen that the first parallelization only scales
well up to 8 processors and then flattens out. The predicted speedup of this
version is quite close to the actual speedup obtained. In this case, the dominant
parameter of the cost model is tpecrr, as 2.3 seconds are needed to pack the
whole second matrix. This parameter is multiplied by P in L;,;;. Thus, the
communication overhead increases linearly with the number of processors.

The torus version scales much better and the prediction is also quite accurate
in all points but in the perfect squares. The reason is that the cost model
assumes that the main process does not share a processor with a worker, but
in our measurements this was not the case for perfect squares. The cost model
could be easily adjusted to take this fact into account.

The main reason why the torus scales better than the simple approach can
be seen in the cost model: Now, L;,;; does not depend heavily on the number
of processors because tpqcrc is proportional to 1/P: as P increases, the block
size is smaller. The total communication cost incurred at the beginning of the
computation is the same.

4.4.6 Pair Interactions — Ring

Let us assume that we want to determine the force undergone by each particle
in a set of n atoms. The total force vector f; acting on each atom z;, is

n

fi=Y Pl ;)

=1

29

30

' péirs!ring !
predicted
linear speedup.

25 -

20

15 +

Speedup

10

5

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
number of PEs

Figure 4.9: Speedups of pair interactions

where F(z;, ;) denotes the attraction or repulsion between atoms z; and z;.
This constitutes an example of pairwise interactions. For a parallel algo-
rithm, we may consider n independent tasks, each devoted to compute the total
force acting on a single atom. Thus, task i is given the datum z; and computes
{F(zi,z;) | i # j}. It is however inconceivable to have a separate process for
each task when dealing with a large set of particles, as it is usually the case.
Therefore, we distribute the atoms in as many subsets as the number of pro-
cessors available. We use a ring structure, so that all the data can flow around.
In the first iteration, each process will compute the forces between the local
particles assigned to it. Then, in each iteration it will receive a new set of parti-
cles, and it will compute the forces between its own particles and the new ones,
adding the forces to the ones already computed in the previous iterations:

force :: [Atom] -> [ForceVec] force xs = ring noPe splitIntoN
concat (force’ np) xs force’ :: Int -> ([Atom],[[Atom]]) ->
([ForceVec]l,[[Atom]]) force’ np (local,ins) = (total,outs)
where outs = take (np - 1) (local : ins)
total = foldll’ f forcess
f acums news = zipWith addForces acums news
forcess = [map (faux ats) local | ats <- (local:ins)]
faux xs y = sumForces (map (forcebetween y) xs)

sumForces 1 = foldl’ addForces nullvector 1

Figure 4.9 shows the speedups obtained using 7000 particles, the sequential
execution time being 194.86 seconds. The total communications of each process
are in O(n), while its computations are in O(n?/p), n being the number of
particles and p the number of processors. As the communications are now
negligible, and the work to be done in the parent process is also minimal, the
main inefficiency is the time needed in the parent to create and initialize the
child processes: 0.03 seconds per child.

30

4.5 Related Work and Conclusions

Well-known approaches to introduce skeletons in a parallel language include:
Darlington et al. [DFHT93], P?L [Pel98], Skil [BK96], and others. As Eden,
Skil allows to design new skeletons in the language itself, the main difference
being that Skil is based on the imperative host language C.

In PMLS [SMHO1] Scaife et al. extend an ML compiler by machinery which
automatically searches the given program for higher-order functions which are
suitable for parallelisation. During compilation these are replaced by efficient
low-level implementations written in C and MPI. In HaskSkel [HR99], Ham-
mond and Rebén Portillo combine the evaluation strategies of GpH [THLP98]
with Okasaki’s Edison library [Oka00] (which provides efficient implementations
of data structures) to implement parallel skeletons in GpH. Other funcional lan-
guages with parallel facilities are Concurrent Clean [Kes95] and Caliban [HM99,
Chapter 14]. These languages would be appropriate for the definition of skele-
tons as they have an explicit notion of process. Nevertheless, not much work
has been done in this direction.

The main differences between Eden and more traditional skeleton-based lan-
guages are two: (1) Eden is functional while the vast majority of skeleton im-
plementation languages are imperative, and (2) skeletons can be implemented
and used within the same language. In other approaches, skeletons are often
implemented in a low-level language different from the language in which they
are used.

The advantages of (1) can be experienced from the skeletons presented in
this chapter. The whole code is included for most of them, and these code
portions are rather short. Typically they fit is less than half a page. This is a
consequence of the higher level of abstraction of functional languages compared
to imperative ones. This higher level also extends to the coordination features.
Compared to an implementation by using a message passing library such as MPI,
less details are given. For instance, neither explicit message sending/receiving,
nor initialization/termination routines need to be called.

The advantages of (2) are also evident: Eden, as a skeleton-based language,
is easily extensible. The programmer may create new skeletons at any time, or
modify the existent ones, and immediately use them in the same program text.
Thus, Eden serves both as an application and as a system language, yielding
a high degree of flexibility for the programmer. In other approaches, skeleton
creation is a hard task and it is normally considered as a specialized system
activity, or as part of the compiler contruction. Application programmers are
not allowed to create new skeletons.

Of course, everything comes at a price. Eden, as a system language, offers
to the programmer less opportunities for optimization than other lower-level
languages. For instance, the packing conventions of Eden for communicating
streams are often not convenient for some applications. Also, the lack of broad-
casting facilities may lead to higher overheads (e.g. see Section 4.4.5).

All the speedups reported here are relative to the time of the same parallel
program running in a single processor. So, absolute speedups, i.e. speedups

31

relative to the best sequential version of the algorithm, written for instance in
C, are expected to be lower. This will be due, of course, to the constant factor
between a Haskell implementation and one done in C (this factor has been
reported to be around 4 in [HFea96]). But also, lower relative speedups than
those of an implementation written, for instance, in C + MPI can be expected.
These will be due to the lower overheads introduced by MPI with respect to our
RTS, which have been remarked in the precedent paragraph.

So, we do not claim to achieve optimal speedups with Eden. Our divise can
be summarized in the following sentence: acceptable speedups at low effort. If
someone aims at better speedups, then a different language, and probably more
effort, would be needed.

Parallel applications in Eden can also be done by explicitly instantiating
processes. This corresponds to doing sequential functional programming with
explicit recursion. Sometimes this is appropriate, but an experienced functional
programmer will try to use higher-order functions, i.e. skeletons, as much as
possible in order to reduce the amount of work and the possibility of making
mistakes. Nevertheles, explicit process instantiation is not forbidden. A com-
plex application could use both available skeletons and explicit instantiation.
Even new skeletons could be defined and used in the program. This gives the
programmer complete flexibility about the use of the parallel facilities of the
language.

In this chapter several typical data-parallel, task-parallel and systolic skele-
tons have been considered in Eden. Each skeleton has been first specified by a
sequential function and then implemented in parallel, some of them in several
different ways. Cost models for predicting the execution time of the implemen-
tations have been defined. Several example programs have been parallelized
using the skeletons and measured on a Beowulf cluster with several dozens of
processing elements. The experiments have shown the flexibility and the effi-
ciency of skeletal programming in Eden. The predictions of the cost models
have been accurate.

32

Bibliography

[BK96]

[BKL9Sa]

[BKL"98b]

[BLOMPY7]

[BLOP96]

[Col89]

[DFH*93]

[GBDJ94]
[GenT8]

[HamO00]

[HFea96]

[FIM99]

G. H. Botorog and H. Kuchen. Efficient Parallel Programming with
Algorithmic Skeletons. In EuroPar, LNCS 1123, pages 718 — 731. Ecole
Normale Supérieure de Lyon, Springer Verlag, 1996.

S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to
(Parallel) Eden: An Implementation Point of View. In PLILP’98, pages
318-334. LNCS 1490, Springer-Verlag, 1998.

S. Breitinger, U. Klusik, R. Loogen, Y. Ortega-Mallén, and R. Pena.
DREAM: the Distributed Eden Abstract Machine. In Selected Papers of
Implementation of Functional Languages, IFL’97. St. Andrews, Scotland,
pages 250-269. LNCS 1467. Springer-Verlag, 1998.

S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peha. The Eden
Coordination Model for Distributed Memory Systems. In Workshop on
High-level Parallel Programming Models, HIPS’97, pages 120-124. IEEE
Computer Science Press, 1997.

S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peia. Eden: Lan-
guage Definition and Operational Semantics. Technical Report, Bericht
96-10, revised version, Philipps-Universitdt Marburg, Germany, 1996.

M. Cole. Algorithmic Skeletons: Structure Management of Parallel Com-
putations. MIT Press, 1989. Research Monographs in Parallel and Dis-
tributed Computing.

J. Darlington, A.J. Field, P.G. Harrison, P.H.J. Kelly, D.W.N. Sharp,
Q. Wu, and R.L. While. Parallel Programming Using Skeleton Functions.
In Parallel Architectures and Languages Europe. Springer, 1993.

A. Geist, Ad. Beguelin, J. Dongarra, and W. Jiang. PVM: Parallel Vir-
tual Machine. MIT Press, 1994.

W. M. Gentleman. Some Complexity Results for Matrix Computations
on Parallel Computers. Journal of the ACM, 25(1):112-115, Jan 1978.

M. Hamdan. A Combinational Framework for Parallel Programming Us-
ing Algorithmic Skeletons. PhD thesis, Department of Computing and
Electrical Engineering. Heriot-Watt University, 2000.

P. H. Hartel, M. Feeley, and M. Alt et al. Benchmarking Implementations

of Functional Languages with ”Pseudoknot”, a Float-Intensive Bench-
mark. Journal of Functional Programming, 4(6):621-655, July 1996.

K. Hammond and G. J. Michaelson, editors. Research Directions in
Parallel Functional Programming. Springer-Verlag, 1999.

33

[HR99]

[HST8]
[Imp01]

[Kes95]

[KLPRO1]

[KOMP99]

[KPRO1]

[MPT94]

[Oka00]
[Pel98]

[Pey96]

[PHOY]

[PHH'93]

[PRO1]

[PRSO01]

[PS01]

[Qui94]

K. Hammond and A. J. Reb6n Portillo. HaskSkel: Algorithmic Skele-
tons for Haskell. In Implementation of Functional Languages (IFL’99),
Selected Papers, LNCS 1868, Lochem, The Netherlands, September 1999.
Springer-Verlag.

E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Pit-
man, 1978.

Impala. Impala — (IMplicitly PArallel LAnguage Application Suite).
<URL:http://wuw.csg.lcs.mit.edu/impala/>, July 2001.

M. Kesseler. Constructing skeletons in Clean: The bare bones. In
A. P. Wim Bohm and John T. Feo, editors, High Performance Func-
tional Computing, pages 182-192, April 1995.

U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation Skele-
tons in Eden: Low-Effort Parallel Programming. In Selected papers of
Implementation of Functional Languages, IFL 2000. LNCS 2011, 2001.

U. Klusik, Y. Ortega-Mallén, and R. Pefia. Implementing Eden - or:
Dreams Become Reality. In Selected Papers of Implementation of Func-
tional Languages, IFL’98, London, Sept. 1998, pages 103-119. LNCS
1595. Springer-Verlag, 1999.

U. Klusik, R. Pena, and F. Rubio. Replicated Workers in Eden. In Con-
structive Methods for Parallel Programming (CMPP’2000). To appear.
Nova Science, 2001.

MPI Forum. MPI: A Message-passing Interface Standard. International
Journal of Supercomputer Applications, 8(3/4), 1994.

C. Okasaki. An Overview of Edison. In Haskell Workshop, 2000.

S. Pelagatti. Structured Development of Parallel Programs. Taylor and
Francis, 1998.

S. L. Peyton Jones. Compiling Haskell by Program Transformations: A
Report from the Trenches. In ESOP’96. LNCS 1058, Springer-Verlag,
1996.

S. L. Peyton Jones and J. Hughes, editors. Report on the Programming
Language Haskell 98. URL http://www.haskell.org, February 1999.

S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L.
Wadler. The Glasgow Haskell Compiler: A Technical Overview. In Joint
Framework for Inf. Technology, Keele, pages 249-257, 1993.

R. Pena and F. Rubio. Parallel Functional Programming at Two Levels
of Abstraction. In Principles and Practice of Declarative Programming
(PPDP(1). ACM Press, September 2001.

R. Pena, F. Rubio, and C. Segura. Deriving Non-Hierarchical Process
Topologies. In Draft Proceedings of the 8rd Scottish Functional Program-
ming Workshop, 2001.

R. Pena and C. Segura. Non-Determinism Analysis in a Parallel-
Functional Language. In Selected papers of Implementation of Functional
Languages, IFLO00., pages 1-18. LNCS 2011. Springer-Verlag, 2001.

M. J. Quinn. Parallel Computing. McGraw-Hill, 1994.

34

[SMHO1]

[THIT96]

[THLPYS]

[TLPO1]

N. Scaife, G. Michaelson, and S. Horiguchi. Comparative Cross-Platform
Results from a Parallelizing SML Compiler. In Draft Proceedings of
Implementation of Functional Languages, IFL’01, Stockholm (Sweden),
2001.

P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and
S. L. Peyton Jones. GUM: a Portable Parallel Implementation of Haskell.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM Press, 1996.

P. W. Trinder, K. Hammond, H. W. Loidl, and S. L. Peyton Jones. Al-
gorithm + Strategy = Parallelism. Journal of Functional Programming,
8(1), 1998.

P. W. Trinder, H. W. Loidl, and R. Pointon. Parallel and Distributed
Haskells. Journal of Functional Programming, 2001. To appear.

35

