Chapter 1

A Sharing Analysis for SAFE

Ricardo Pefty Clara Segurg Manuel Montenegrb

Abstract: We present a sharing analysis for the functional langugafe This
is a first-order eager language with facilities for prograemrontrolled destruc-
tion and copying of data structures. It provides aisgions i.e. disjoint parts
of the heap where the programmer may allocate data strgcturbe analysis
gives upper approximations to the sets of variables resefcsharing a recur-
sive substructure, or any substructure, of a given varidtdeesults will be used
to guarantee that destruction facilities and region mamage are done in a safe
way. In order to have a modular and efficient analysis, we igesignatures for
functions, which summarize their sharing behaviour. Thegp&nds up describ-
ing the implementation of the analysis and some examples.

1.1 INTRODUCTION

Many imperative languages offer low level mechanisms tocalle and free heap
memory, which the programmer may use in order to dynamicahate and de-
stroy pointer based data structures. These mechanismihgipeogrammer com-
plete control over memory usage but are very error pronel kiielwn problems
that may arise when using a programmer-controlled memonyagement are
dangling references, undesired sharing between datdwgtesavith complex side
effects as a consequence, and polluting memory with garbage

Functional languages usually consider memory managenseatlew level
issue. Allocation is done implicitly and usually a garbag#ertor takes care of
the memory exhaustion situation.

In a previous paper [11] we proposed a semi-explicit apgrdacmemory
control by defining a functional language, callgdfe in which the programmer
cooperates with the memory management system by providimg snformation

IDpto. Sistemas Informaticos y Computacion, Univ. Cortgrhse de Madrid, Spain
ri cardo@i p. ucm es,csegura@i p. ucm es, manuel nont @nai | . com
Work partially supported by the Spanish project TIN200243-C04.

about the intended use of data structures. For instanceprdgrammer may

indicate that some particular data structure will not bedeeein the future and
that, as a consequence, it may be safely destroyed by thimeusystem and

its memory recovered. The language uses regions to loc#desttactures. It

also allows controlling the degree of sharing between dfiedata structures. A
garbage collector is not needed. Allocation and destroncifalata structures are
done as execution proceeds.

More interesting is the definition of a type system guarantgthat destruc-
tion facilities and region management can be done in a safeTids type system
will be the main topic of an ongoing paper (a draft version barfound at [11]).
In particular, it guarantees that dangling pointers arenexeated in the live heap.
Anill-constructed program is rejected by the type systemmdkes a heavy use of
sharing information, given by two functions calledareallandsharerec Given
a subexpressioaof a function body and a free variabtesuch thatis included
in the lexical scope of,

e shareal(x, e) returns the set of all the variables in scopewhich, at runtime,
may share any substructure of the structure pointed to by

e sharereg¢x, e) returns the set of all the variables in scopewhich, at runtime,
may share any recursive substructure of the structuregubtotbyx.

In this paper an upper approximation to these two functisnsomputed at
compile time by an abstract interpretation-like analy8idditionally we formally
define the operational semantics of the language.

The structure of the paper is as follows: In Section 1.2, vewiple a summary
of the syntax and the operational semanticSafe Then, Section 1.3 presents
in detail the sharing analysis. In Sections 1.4 and 1.5,rttpddmentation of the
analysis is described and it is applied to some illustragix@mples. Section 1.6
surveys some related work and concludes.

1.2 SUMMARY OF SAFE

1.2.1 Syntax

We start by reproducing some crucial definitions which ulieléine language. In
Section 1.6 we compare our language design with other appesaising regions
and memory management facilities.

Definition 1.1. A region is a contiguous memory area in the heap where data
structures can be constructed, read, or destroyed. It iscalted and freed as a
whole, in constant time.

Definition 1.2. A cell is a small memory space, big enough to hold a data con-
structor. In implementation terms, a cell contains the m@nkcode pointer) of
the constructor, and a representation of the free variabdeshich the constructor

is applied. These may consist, either of basic values, oowiters to non-basic
values.

Definition 1.3. Adata structure, in the following a DS, is the set of cells obtained
by starting at one cell considered as the root, and takingithesitive closure of
the relation G — Cp, where G and G are cells of the same type T, and in C
there is a pointer to &

That means that, for instance in a list of typga]], we are considering
as a DS the cons-nil spine of tlreitermostist, but not those belonging to the
individual innermost lists. Each one of the latter constitai separate DS.

The following decisions were taken:

1. A DS completely resides in one region.
2. One DS can be part of another DS, or two DSs can share a tiérd o

3. The basic values —integers, booleans, etc.— do not aflazls in regions.
They live inside the cells of DSs, or in the stack.

4. A function ofn parameters can access:

e Its n parameters, each one residing in a possibly different negio

e Its output region, whenever it builds a DS as a result. There is at most one
output region per function. Delivering this region idemtifas a parameter
is the responsibility of the call. We force functions to ledkeir result in
an output region belonging to the calling context in ordesately delete
the intermediate results computed by the function.

e Its (optional)working region, referred to through the reserved identifier
self where it may create intermediate DSs. The working regiantha
same lifetime as the function call: It is allocated at eaclo@ation and
freed at function termination.

5. If a parameter of a function is a DS, it can be destroyed byfuhction. We
will say that the parameter mondemnedbecause this capability depends on
the function definition, not on its use.

6. The capabilities a function has on its accessible DSs egidms are: a func-
tion may only read a DS which is a read-only parameter; a fanchay read
(before destroying it), and must destroy, a DS which is a eomtked param-
eter; a function may construct, read, or destroy DSs, ireeits output or its
working region.

The syntax oBafes shown in Figure 1.1. This is a first-order eager functional
language where sharing is expressed using variables inidmnend constructor
applications. We inten8afeto be a core language resulting from the desugaring
of a higher level language similar to Haskell or ML. The asaydefined in this
paper is however done at core level. This is a usual approaciany compilers.

A programprogin Safeis a sequence of possibly recursive polymorphic func-
tion definitions followed by a main expressicexpr, calling them, whose value

3The extension to mutual recursion would pose no special@nuh but we restrict
ourselves to non-mutual recursion in order to ease the piatsen.

prog — deg;...;deg,expr

dec — fX"r=-expr {recursive, polymorphic functign
| f X" =expr
expr — a {atom: literalc or variablex}
| x@r {copy}
[x! {reusé
| (f &™) @r {function application
| (fa") {function application
| (Ca")@r {constructor applicatioh
| let x; = expry in expr {non-recursive, monomorphic
| casex of alt; {read-only casg
| casé x of alt; " {destructive case

alt — Cx"— expr
FIGURE 1.1. First-order functional language Safe

is the program result. Function definitions building andireing a new DS wiill
have an additional parametemwhich is the output region, where the resulting DS
is to be constructed. In the right hand side expressionioahd its own working
regionself may be used. Polymorphic algebraic data types definitioasabso
allowed. We will assume they are defined separately thralagdndeclarations.

The program expressions include variables, literals, tfanand constructor
applications, and alslet andcaseexpressions, but there are some additional ex-
pressions:

If xis a DS, the expressiot@r represents a copy in regiorof the DS ac-
cessed fronx. The DSx must live in a region’ # r. Bothx andx@r have the
same recursive structure and they share their non-reewsshstructures.

The expressior! means the reusing of the destroyable DS to whigloints.
This is useful when we do not want to destroy completely a eamtked parameter
but instead to reuse part of it. In semantic termgndx! point to the same
physical structure but, in language terms, ortés used, the namg becomes
unaccessible in the subsequent text.

In function application we have a special syntax t@ express the inclusion
of the additional output region parameter. Using the samtagywe express that
a constructor application is to be allocated in region

Thecaseé expression indicates that the outer constructorisfdisposed after
the pattern matching so thafs not accessible anymore. The recursive substruc-
tures may be explicitly destroyed in the subsequent codean@hercasé or
reused viax!. A condemned variable may be read but, once its content éais b
destroyed or reused in another structure, it may not be sedemgain. This is
what the type system guarantees. It annotates the type lofsuiable with a !

We show now with several examples how to use the languagiiési In
some of them we will writex! or (C &")@r as actual parameters of applications
in order to abbreviate, whenet binding would in fact be needed. In these exam-
ples we show also the types that the functions have in thesygtem previously

revD:: Va, p1, p2.[a]!@p1 — p2 — [a|@p2
revD xs r= (revauxD xg |@r)@r

revauxD:: Va, p1, p2.[a]!@p1 — [a]@p2 — p2 — [@p2
revauxD xs ys = case xsof

[1—ys

X XX— (revauxD xx(x : ys)@r)@r

FIGURE 1.2. Destructive listinversion

insertD:: Va,p.a— Tree d@p — p — Tree a@p
insertD xt r=casé t of
Empty — (Node Empt@r x Empty@r)@r
Node iy d— let c= compare x y
in casec of
LT — (Node(insertD x @r y d!)@r
EQ— (Nodel y d)@r
GT — (Node | y (insertD x d @r)@r

FIGURE 1.3. Destructive insertion with reuse in a binary se&ch tree

mentioned. The first example is the function that reversést athd, at the same
time, destroys it. The code is shown in Figure 1.2. We use sualuauxiliary
function with an accumulator parameter. Notice that thiedéhces with the usual
functional version are, on the one hand, the use of the rgzaoameter and, on
the other, that @asé is used over the original list. The recursive applicatién o
the function destroys it completely. Those who aallD should know that the
argument is lost in the inversion process, and should naitryse it anymore.
This is reflected in the type of the first argument with a ! aatioh.

The next example illustrates the reuse of a condemned steuctt is the
function, shown in Figure 1.3, that inserts an element innatyi search tree in
such a way that the original tree is partially destroyed. rigfeng but the path
from the root to the inserted element is reused to build thetree but these parts
can no longer be accessed from the original tree.

Notice that when the inserted element is already in the &g l{ranch) the
treet that has just been destroyed is rebuilt. The purely funetieersion is
obtained by removing the ! annotations and returniimgthe EQ branch.

1.2.2 Big-Step Operational Semantics

We have developed a big-step operational semantics fdatingsiage and a small-
step operational semantics which have been proved equtvateFigure 1.4 we
show the big-step operational semanticsSafeexpressions. Audgment of the

Ak:clAk:c [Lit]
Ak:Ca"@j | Ak:Ca"@j [Cong
Alp—wlL,k:plAk:w [Var]
j<k 1#]j (0,cd")=copya.j.Ca")
Alp— (I,Ca"),k: p@j I} ©,k:C' @]
AU[p—wlL,k:p J Ak:w [Vars]

SHfx"=e A,k+1:e[a.-/xin,k+1/selﬂl}@,k’+l:v
Ak:fa"|oO|g,K:v

[Vary]

[App.]

SEix'r=e Ak+1:efa/x k+1/self,j/r]lO,K+1:v
Ak fa"@j O |e,K:v
Ak:eglOK:c 0Ok :elc/x] WK v
Ak:letx;=e inel WK :v
Ak:e | OK:Cad"@] j <K fresh(p) OU[p+— (j,CaM)],K :e[p/x1] | W,k : v
Ak:letxy;=einel WK :v
c=G A,k:er[mnrme,k’:v
Alp— (j,Ca™)),k:casepof G X" — & L ©,K :v
cC=C Ak:edmn']ue,k’:v
AU[pH(j,CE“f)},k:casepofmmue.,k’:v

[App,]

[Letﬂ

[Lety]

[Casé

[Caseé]

FIGURE 1.4. SAFEbig-step operational semantics

form Ak : el ©,K : v means that expressiaris successfully reduced to normal
form v under heag with k+ 1 regions, ranging from O tk, and that a final heap
© with K’ + 1 regions is produced as a side effect.

A heapA is a function from fresh variablas (in fact, heap pointers) to clo-
suresw of the form (j,C&"), meaning that the closure resides in regjonlf
[p— w] € A andw = (j,Ca"), we will say thatregionNw) = j and also that
region(p) = .

A normal form v is either a basic value or a constructiolCaG"@j to be
stored in regionj. The actual parametegs are either basic values or pointers
to other closures. Actual region identifiefsare just natural numbers. Formal
regions appearing in a function body are either the formahapaterr or the
constanself.

By A[p— w] we denote a heapwhere the bindingp — w] is highlighted. In
contrast, byAU [p — w] we denote the disjoint union of he&pwith the binding
[p — W].

The semantics of a compleBafeprogramds; ... ;dn; e (not shown) is the se-
mantics of the main expressi@rin an environmenk containing the declarations

d1,...,d, of all the functions.

RulesLit and Consjust say that basic values and constructions are normal
forms. RuleConsdoes not create a closure. Closures are actually creatadéy r
Let, which is the only one allocating fresh memory.

Rule Vary brings a copy of a closure into the main expression. Riée
makes a complete copy of the DS pointed to by a varighieto a new region
j. Functioncopyfollows the pointers in recursive positions of the origiatilic-
ture residing in regiom and creates in regiona copy of all recursive closures
except for the root closu@a™". In our runtime system we foresee that some type
information is available so that it is possible to implemigig function.

Shouldcopyfind a dangling pointer during the traversal, the whole rubeid
fail and the derivation would be stuck at this rule. If theseno failure, then
the main expression becomes a capgjn of this root closure where the pointers
a; in recursive positions pointing to closures in regiohave been replaced by
pointersa; to the corresponding closures in regiprThe pointers in non recursive
positions of all the copied closures are kept identical & lew closures. This
implies that both DSs, the old and the new, may share somstsutiures. For
instance, if the original DS is a list of lists, the structareated bycopyis a copy
of the outermost list, while the innermost lists become sti&etween the old and
the new list.

Rule Vars is similar to ruleVar; except for the fact that the bindirig — w]
is deleted angb does not belong to the domain of the resulting heap. Thismcti
may create dangling pointers in the living heap as some mgsmay have free
occurrences op.

RulesApp, and App, show when a new region is created. Notice that the
body of the function is executed in a heap with 2 regions. That is, the formal
identifier self is bound to the new regiok+ 1 so that the function body may
create DSs in this region or pass this region as a paramefi@nt¢tion calls. By
O |¢ we denote the heap restricted to closures belonging at most to redibn
In other words, before returning from the function, all eloss created in region
k' + 1 are deleted. This action is another source of possibleliggpinters.

RulesLet; andLet, show the eagerness of the language: first, the auxiliary
expressiom is reduced to normal form and then the main expression isiated.
The occurrences of the program variaklere replaced either by the normal form
if it is a basic value, or by a pointer to it if it is a construmti Notice also that a
construction is converted into a closure only if it is bouadtvariable in det.

Finally, ruleCaseis the usual one while rul€ase expresses what happens in
a destructive pattern matching: the binding of the disarant variablep disap-
pears from the heap. This action is the last source of pasdéoigling pointers.

Proposition 1.4.1f A,k: el ©,K : vis derivable, then k- K'.
Proof: Straightforward, by induction on the depth of the derivatio

In the following, we will feel free to write the derivable jgchents ad\ k: e}
O.k:v.
By fv(e) we denote the set of free variables of expressj@xcluding function

names and region variables, andfhs(e), the set of free region variables@fBy
Fresh we denote the set of names from which the funcfi@shin rule Let,
selects fresh names, and bythe set of natural numbers. Also, bdpm(A) and
ranggA) we denote the following sets:

doma) = {p|[p—w A}
ranged) = U{fv(w) | [p—w] € A}

Proposition 1.5.1f e is an expression satisfying(& C Fresh and frye) C N, and
Ak: el ©,k: vis derivable, and randé) C Fresh, then all judgments ki : g |
O, ki : v; of the derivation satisfy:

1. fv(g) Ufv(vi) C Fresh.
2. frv(g) Ufrv(vi) CN.
Proof: By induction on the depth of the derivation.

For this reason, in the rules of Figure 1.4 we have systeaibtiased letterp
—intended to mean a pointer— when referring to free vargldad letterj —
intended to mean a natural number— when referring to freienegariables.

1.3 SHARING ANALYSIS

In this section we define an analysis that approximates tagrghrelations be-
tween the variables of a program. At this point, Hindley\éit types have already
been inferred (see implementation details in Section $ajhe analysis can ask
for the type of a variable through a function calkyge

1.3.1 Sharing relations

In order to capture sharing, we define four different binatgtions between vari-
ables:

Definition 1.6. Given two variables x and y, in scope in an expression,
1. x<~y denotes that x is a recursive descendant of y.
2. x/\~y denotes that x shares a recursive descendant of y.
3. X<y denotes that x is any substructure of y.
4

. XAy denotes that x shares any substructure of y.

In Figure 1.5 we illustrate these relations using trees poe®ent data struc-
tures in the heap. A black subtree represents a recursigéraature while a white
subtree represents any substructure (recursive or not).

y

X<~y (SubR % X~y (ShR %
y

X<y (Sub % XAy (Sh %

FIGURE 1.5. Sharing relations

We note that all the four relations are reflexivg, is also symmetric, anei~
and < are transitive. Moreover, the following implications hold

X<IvY=XIYy=XAY
X<vy=> XA y=>XAY

but <« and A~ do not necessarily imply each other.

The interpretation defined in Figure 1.6 does a top-dowretsat of a pro-
gram, accumulating these relations as soon as bound vesibbtome free vari-
ables.

Whenever convenient, non-symmetric relations can be redations/ar—
{Var}, giving R(x) the set of ally such thatyRx(i.e. (y,x) € R) . Also we will
write R= [x — § to indicate thaB= R(x).

The symmetric relatiom\ is kept in a set of sets of variables.SE A then
xAyforallx,ye S

Based on the above considerations, we will define an absttecpretatiorS
(meaningsharing which, given an expressiadelivers the following seven sets:

(SUbRPShRRSubR SubRShRSub Sh)

which contain respectively all the variablesuch that <~z e/A~z e<1z z<~ g,
z/\~e, z<geandzA e, whereeRxandxRemeans that the normal form efwhen
evaluated at runtime, is relatedxahroughR.

1.3.2 Function signatures

In order to achieve a modular analysis, we decide to reflextrésult of the
analysis of a functiorf in a function signature We keep these signatures in
a function environmenp. A function signaturep(f) has the following type:
({Int},{Int},{Int}, {Int},{Int},{Int}, {Int}).

The meaning of the seven sets is as above, except for thééthese contain
only parameter indexes instead of all the (free and boundbas of the body

expression. This is reasonable as the effect of a functionldhbe completely
reflected in the relationship between the parameters ane siodt.

In Figure 1.6 the interpretatioBfor expressions is defined. We explain it in
detail later. When applied to a function definitiérx; ... x, = €, it is straightfor-
ward to extract the signature of the function while computine least fixpoint,
in case it is recursive. The interpretation of a definitiodsthe signature of the
new definition to the signatures environment:

Sif X1... %0 = €] p=fix (Ap.p [f — extrac([x4,...,%n], S[€] Ro Ro Ro Ro p)]) po
where po=p [f — (0,0,0,0,0,0,0))
Ro={(x,x) |i€{l.nt}
extrac{xs (S,...,S7)) = ({i | x e xsNS},...,{i | X €xsNS7})

wherep [f — 9 either adds signaturefor f or replaces it in case there was
already one for it. As functio® and functionextractare monotone over a finite
lattice, the least fixpoint exists and can be computed usilege’s ascending
chain.

Given a whole progran® = deg;...deg; e the analysis first builds an in-
creasing function environment and then analyses the mairesgion given ini-
tially empty relations (there are no free variables but fiomcnames):

Sp[[P] = S[e] 0000 (Su[deq] (.- (Su[dea] [])---))

Notice that the right hand sides of the definitions are amalygven relations
where each parameter is only related to itself. This meaatshle signatures are
computed assuming that all the parameters are disjoint. NVitiey are not, the
function application computes the additional sharing.

1.3.3 Interpretation of expressions

We explain now the details of the interpretatiBifior expressions. By abuse of
notation, we will writeShx) even thougtshis not a function, with the following
convention:

SHX)E J{S| xe SASe Sh

A basic valuec neither has substructures nor is part of any structure,sso it
interpretation is just seven empty sets.

If xis returned as the result of a function, we use the informatidhe accu-
mulator parameters @ to extract all the relevant information about its sharing.
Notice that, from the operational semantics point of viehis just the same struc-
ture asx, hence its interpretation. The semanticx@ is the creation of a copy
of the recursive part ok in a new regiorr. As a consequence, the first, third,
fourth and fifth sets of the interpretation are empty, andttiel set excludes
those variables with the same (recursive) typex.ashe non-recursive part of
X@r is shared withx and potentially with any variable sharing substructurdf wi
X, hence the seveth set. However only the non-recursiverehildf x may be
children ofx@r, hence the sixth set.

10

S[c] SubR ShR Sub $h
S[[X] SubR ShR Sub $h

(0,0,0,0,0,0,0)

({z| x€ SubRz)},

{z| xe€ ShR2)},

{z|x Sutiz)},

SubRx), ShRX), Suk{x), Shx))

S[[x!'] SubR ShR Sub $h = S[x] SubR ShR Sub $h
S[[x@r]] SubR ShR Sub $h = (0,
{z| x € ShR2z) Atype(2) # type(X) },
0,0,0,
Sul{x) — SubRx), Sh(x))
S[ga™@r] SubR ShR Sub $h = ({z| 3] € SUbRP@®, € SubRz)},

{z| 3j € ShRPe; € ShR2)},
{z| 3j € SubPga; € Sul{z)},
U;{SubRay) | j € SubRg,
Uj{ShRay) | j € ShRg,
U;j{Sulfa) | j € Subg,
U;j{Sha) | j € Shg)

where (SubRPgShRPgSubPgSubRgShRgSubgShg = p(g)

S[Ca™@r] SubR ShR Sub $h = (0,
{z| 3a; € ShR2)},

Uj{SubRa;) | j € RecPo&C)},
U;j{ShRa;) | j € RecPo&C)},
Uj{Sutia)) | j € {1.m}},
Uj{Shaj) | j € {1.m}})

S|let x1 = e1 in €] SubR ShR Sub $h = (S[€] SubR ShR Sul Sh p)\{x1}

where (SubRR,ShRR, SubR, SubR, ShR, Suh, Sh)) = S[e1]] SubR ShR Sub $h
SubR = (SubRJ[X; — SubR]U{[z— {x1}] | z€e SubRR})*
ShR = ShRU [x1 — ShR]U{[z— {x1}] | z€ ShRR} USubR
Sub = (SubU[xq — Sub]U{[z— {x1}] | z€ SubR})*
Sh = Shu{{x} USh} ¥ (Suk UShR)

S[casexofCixj" — e]] SUbRShRSub$h = J;((S[&] SubRShR Sul Sh p)\{x;"})

where SubR= (SubRU [x — {Xij |] € RecPo&C;)}]
U {[xj — SUbRX)\{x}] | j € RecPo&Ci)})*
ShR = ShRU{[x;j — ShRX)] | j € RecPofC;)} USubR
Sub = (Sub[x— {x;j | j € {1.n}]U{[xj — SU)\{x}] | j € {1..ni}})*
Sh = (Shu{{y,xj} |ye SHx)Aj € {1..ni}}) ¥ (SubUShR)

FIGURE 1.6. Definition of the abstract interpretation S

11

The interpretation of a function applicatigregg™@r returning a DS is rather
involved. Regarding the first set, the recursive descenddaition is transitive.
So, the result of is a recursive descendant of a variableand only if an actual
parameten; of g is a recursive descendantoénd the result of is a recursive
descendant odj. The same transitivity applies to the third set. Regardirgy t
second set, the result gfshares a recursive descendant of a varialflan actual
parameten; of g shares a recursive descendant,ainda; is in sharing relation
with the result ofg. This probably will give us more variables than the ones
actually sharing a recursive descendant,djut it is a safe approximation. This
is a place where signatures may lose information. The foamthsixth sets are
defined taking respectively into account the transitivitytee relations<~ and
<. The fifth and seventh sets are safe, but may be imprecisepxpyations
to respectively the set of variables sharing a recursivetsutture and sharing
any substructure with the result gf The interpretation of a function application
g @™ of a functiong not having an output region as a parameter is identical to the
previous one.

In the interpretation of a data constructi@™@r, the first and third sets are
empty because a newly created DS cannot be a substructung oftzer. How-
ever, it will share a recursive descendant of a variatil@ny of its substructures
a; already shared it. Any variable being a recursive descedrafanrecursive pa-
rametera; of C will also be a recursive descendant of the construction. skte
RecPofC) contains the recursive positions of the constru€tolimilar reason-
ing can be applied to the fifth set containing the variablegkbkhare a recursive
descendant of the construction. The next set definitionogsathe transitivity of
the < relation. The last set consists also of a union over all tharpaters ot,
because the construction inherits the sharing of all itssubtures.

Thelet expression introduces a new bound varia@leshich may appear free
in the main expressioa First, the interpretation of the auxiliary expressans
launched and the sharing created by it is accumulated ingtenpeters. Then, the
main expressior is interpreted taking into account the new sharingR tepre-
sents a reflexive, non-symmetric, transitive relationRbyve mean its reflexive,
transitive closure. Operater computes the union of a reflexive, symmetric and
non-transitive relation and a reflexive, non-symmetriasitive one. Notice that
the addition oSubR to ShR, and the addition of this latter set and thaSail» to
Sh justimplements the inclusion of the underlying relaticesexplained above.
Finally, the information related tg is deleted as the variable will not be in scope
in the context.

As usual, the interpretation of @aseis the least upper bound of the inter-
pretation of its alternatives, and this involves a loss &brimation. Before each
alternative is interpreted, we accumulate the sharing eftibund variables;;
introduced by it. Part of this sharing is straightforwardl: these variables are
descendants of the parent structusnd some of them are recursive descendants
of it. Additionally, if we havey € SUbRXx) Ay # X, that meany <~ x. As there is
no more information available, it may be the case that-x;; for some recursive
child of x. The only safe way to cope with this possibility is to includeSubR

12

the pairsy <~x;j for all the recursive children of. Similar reasoning applies to
the rest of the sets.

The interpretation otase! is the same as the previous one. Although the
discriminant variable is being condemned we cannot elitriita sharing infor-
mation as we do not know whether the rest of variables ardysafed. For
example, we could write = casé x of C y— x. The analysis says that variables
x andz share a substructure, although such sharing is unsafe $#chas been
destroyed.

1.4 IMPLEMENTATION AND EXAMPLES

In this section we present the implementation of the ansigsd give some ex-
amples of functions to which it has been applied. We have définconcrete sug-
ared syntax folSafein which programs look very much like Haskell programs,
i.e. functions are defined by means of equations and pattatching, guards and
where clauses are allowed, as well as data type declarations éircjyerators
and constructors.

A complete front-end has been developed from scratch byssamdard tools
such as lexical analyzer and parser generators. In Figdned show its (already
implemented) phases. The renamer phase ensures that @estifiér is well de-
fined and that every bound variable is given a different nafelindley-Milner
type inference is done at this level in order to reject ifhéd programs, and to
provide report messages related to the sugared syntax, tAssharing analysis
needs the underlying type of a variable and the recursivigos of data con-
structors (cf. Figure 1.6). This phase decorates each ssiprein the abstract
syntax tree with its Hindley-Milner type.

The desugarer transforms the high-level syntax intd3afecore syntax pre-
sented in Section 1.2. During this transformation new bovariables may be
introduced. They are given appropriate types and fresh same

After these steps, the sharing analysis described in tipisra done. Its main
function has the following type:

analyzePrg :: Prog TypeExp -> Prog (TypeExp, Maybe Shar el nfo)

That is, given a program decorated with Hindley-Milner typi returns a pro-
gram additionally decorated with sharing information. S'&haring information
has different shapes depending on the entity being decbrate

o If it is a function definition, it consists of its signature.

e If it is a let or acase expression, it consists of the sharing information accu-
mulated from the beginning of the function body this expi@sbelongs to, up
to the root of the expression. These are the only expressibese we need to
keep the sharing information, which consists of the seve@&responding
to the variable either defined by thegt expression, or inspected by thase
expression.

e Binding occurrences of variables are not decorated.

13

Parse
!
!

Hindley-Milner

!

Desugare

1
| Sharing Analysi$

FIGURE 1.7. Phases of the Safe compiler implementation

In this way, it is easy to extract thehareallandsharerecsets for any given vari-
ablex in any given context. TheighRx) andShx) give us the desired informa-
tion. Such information is used in the following phase, whossult consists of
Hindley-Milner types decorated with destruction (!) aratans, i.e.Safetypes.
This phase is also implemented but it is not part of this paper

The front-end and the analysis have been implemented indlasking the
GHC to compile it. In total, about 3,000 Haskell lines havermwritten. In order
to improve efficiency, the analyzer stores the four relaiona single balanced
tree, using the moduldgap andSet of the GHC library [1]. Also, the inverses
of the three first relations are kept in the tree. In this whg, symmetric and/or
transitive closures, the union, and some other operatiorrelations needed by
the analysis, are done in a more concise and efficient wayn betthe number
of bound variables of a function bodwy the size of its abstract syntax tree, and
p the number of function arguments. Then, the analysis cast@nmp) in the
worst case. The analysis of a function can be done indep#igaémach other.

When applied to the functions defined in Section 1.2, theyaismtomputes
the following signatures:

p(revauxD = ({2},{2},{2},{2},{2},{2},{1,2})
p(revD) = (0,0,0,0,0,0,{1})
p(insertd) = (0,{1,2},0,0,{2},{1},{1,2})

which are accurate descriptions of the input-output sigaetations of these func-
tions.

FunctionrevauxDappends the reverse of its first parameter to its second one.
Since it does not reuse the recursive cells of its first patanhe only remaining
recursive sharing is related to its second parameter. Neless the sharing with
the non recursive elements of the first list is reflected iddbeset of the signature.
FunctionrevD consists of a simple call teevauxDpassing it an empty list as the
second actual parameter, so the only remaining sharingis#tween the non-

14

splitD :: Va, p.Int — [a]!@p — p — ([a]@p, [a) @p) @p
splitDOxd r = (]]@r xd)@r

splitDn[]!r =([]@ []@r)@r

splitD n(x:x9)! r = ((x: xsl)@r XS)@r

where (xs1,x$) = splitD (n—1) xs r

mergeD:: Va, p.[a]!@p — [a]!@p — p — [a]@p
mergeD[]! yd r =vyd
mergeD(x: x9)! []!'r = (x:x9)@r
mergeD(x: x9)! (y:ys)!r =
| x<y = (x:mergeD xgy:yd)@r @r)@r
| otherwise= (y: mergeD(x : xd)@r ys @r)@r

msortD:: Va, p.[a]!@p — p — [a]@p
msortD xs r
In<1 =xd
| otherwise= mergeD(msortD xg @r) (msortD xs @r) @r
where (xs1,x$) = splitD (n‘div' 2) xs@r
n = length xs

FIGURE 1.8. Destructive mergesort

recursive structures of the input and output lists.

FunctioninsertD builds a new tree which shares with the original tree ev-
erything but the path from the root to the inserted elemehis heans that the
resulting tree and the original one share both recursivenamdrecursive parts.
This is the reason why 2 appears in the second, fifth and degets of the sig-
nature. Also the resulting tree hagas a non-recursive descendant, so the 1 in the
second, sixth and seventh sets.

1.5 A MORE INVOLVED EXAMPLE

In this section we show a more involved examplmergesoralgorithm. In order
to give compact code, the functions shown in this sectiosagared although the
analysis is executed over their desugared versions.

First, we define auxiliary functions to split the input listchmerge two ordered
lists in a single ordered list. In Figure 1.8 (top) we show satdective version of
the splitting function. As in the previous examples, thene small differences
with a purely functional version. In the base case-(0) we reuse the list in the
output; in the recursive case we usessé (written as a destructive pattern) over
the argument list. We also have to add @here necessary.

The sharing analysis produces the following signatureHisrfunction:

p(splitD) = (0,{2},0,0,0,{2},{2})

15

meaning that:

e The result of the function may share a recursive substraatfithe argument
list, which is obvious.

e The argument list may be a child of the result, which is truemhnis 0.

e The argument list and the result share some substructurehabain is obvi-
ous.

Figure 1.8 (middle) shows the destructive version of thegimgrfunction. In
the recursive calls tsnergeDone of the parameters is one of the original lists.
But the original list may not be referenced as its top cell besn destroyed by
acaseé, so the original list is rebuilt by reusing its componentsis is the only
detail to care about.

The sharing analysis produces the following signatureHisrfunction:

p(mergeD = ({2},{1,2},{2},{2},{1,2},{2},{1,2})

meaning that the argumentlists and the result may sharesiegeand non-recursive
substructures one of the other. Notice that only the seconhzent list may be a
recursive child of the result (and viceversa) because wid buiew cell for each
cell of the first argument while we reuse the second argunmnivhen the first
one is empty.

Finally, in Figure 1.8 (bottom) we show the destructive nesaytmsortD, that
uses the previously defined functions. Both the inputdésind the intermediate
results are either destroyed or reused into the result. dllug/s us to conclude
that this function consumes a constant additional heapesdad11] we proved
this by induction on the length of the argument list. The Btgaanalysis produces
the following signature for this function:

p(msortD) = ({1}, {1}, {1}, {1}, {1}, {1}, {1})

meaning that the argumentlist and the result may sharesigewand non-recursive
substructures one of the other.

Recall that this sharing analysis does not take into acctenfiact that some
substructures are destroyed because it is not known yehahtte program is
type-safe. In this sense the analysis is an upper appraximattthe sharing.

1.6 RELATED WORK AND CONCLUSIONS

Several approaches have been taken to memory managemrmaipbahich have
inspired our work. In [5] a comparison of some of them are @nésd by using a
Game of Life example:

nextgen g= {create and return new generatjon

lifeng=if n=0theng
elselife (n— 1) (nextgen ¢

16

Assuming that a generatignis a big data structure allocated in the heap, a func-
tional program like this would allocat@generations in the heap until a garbage
collector would decide to dispose the intermediate onesveder, if the intended
use of one intermediate generation is only the creationehtxt one, it seems
reasonable to dispose the intermediate data structureoasasoposible. IiBafe

we would modify the program as follows in order to get suchawédur:

nextgen g = case gof — ...
{create new generation in regiop r
life ngr=if n=0theng! {reuse argumern}
elselife (n— 1) (nextgen @r)@r

Tofte and Talpin [13] introduced the use of nested regionhb wietregion p
construct as an extension to Core ML. Like ours, regions amary areas where
DSs can be constructed, and they are allocated and dealibaata whole. A
difference is that, in our system, region allocation/dsadtion are synchronized
with function calls. Also, we have an additional mechanisrat tallows us to
selectively destroy DSs in the working or in the output regim their framework,
in the previous example a single region is forced to conthitha intermediate
data structures and no memory advantages are obtained.

An extension to their work [3, 12] allows tresetall the data structures in
a region whithout deallocating the whole region. In the pres example the
old generation region is resetted once the new generatiore&ed. So, a new
temporary region is created to allocate the new generatioochamust be copied
into the output region after resetting it. The user is resgaa for introducing the
copy functions but not for annotating the program with riasgtannotations.

nextgen g= {create and return new generatjon
lifeng=if n=0theng
elselife (n— 1) (copy (nextgen)

The copyfunction allows to build the new generation in a separatgibreand
makes possible to rulife in constante heap space. However this version may
waste a lot of time just in copying, once for each recursiMé cadditionally,
inserting thecopyfunction requires a deep knowledge of the resetting meshani
as this is not explicit in the program. In our opinion, ttesé annotation is more
intuitive: the user just says that the old generation maytbmrated as it will not
be used anymore. And it is only said for a particular datacttime, not for the
whole region.

The AFL system [2] inserts (as a result of an analysis) atlonaand deallo-
cation commands separated from tegegion construct which now only brings
new regions into scope. In the example, this allows to freeotd region as soon
as the new generation is computed, without needing a copgah ecursive call.
This is only required in the base case:

nextgen g= {create and return new generatjon
life n g=if n=0then copyg
elselife (n— 1) (nextgen ¢

17

Again, inserting theopyfunction in the appropriate place requires a deep knowl-
edge of the annotations that will be inserted after the amaly

Our region system is simpler than those of the above appesaaid it does
not require such complex inference algorithms. Althoughvérsion of the lan-
guage presented here has explicit regions, we have desigreglon inference
algorithm which hides them from the programmer. It is a serpltension of the
Hindley-Milner type inference one.

Hughes and Pareto [8] also incorporate in Embedded-ML tineeyut of re-
gion to their sized-types system so that heap and stack ogot&gn can be type-
checked. In this approach, region sizes are bounded. Our différences to
them are again the region-function association and thdaaiixgisposal of struc-
tures. Their sized types system could be a good startind fosiour future work,
as we also intend to compute region sizes at compile time.

More recently, in a proof carrying code framework, Hofmamua aost [6]
have developed a type system to infer heap consumption.rsTisedlso a first-
order eager functional language with a constmetich which has inspired our
case. They associate to each function the space required byé@sution and
the remaining space after it. They also use a linear typesysut they do not
achieve a complete safety in using destructive facilitigslike us they do not
use the concept of nested regions where DSs are allocatdthtssharing is not
controlled in the same way.

There are many works devoted to sharing analysis in funati@nd logic lan-
guages, some of them rather old. In the functional field, threcd most analyses
has been performing part of the garbage collection at cantipile, or detecting
when destructive updating of data structures could be dafedys

In Hudak’s approach [7] a reference count of shared datarie db compile
time by using abstract interpretation on a first order, eéigectional language
with updatable arrays. The abstract domains consist ohjistral numbers. In
order to have a terminating analysis the domains are resirio finite intervals
{1...n}, for an arbitraryn, and topped witlo meaning ‘too much sharing’. An
array based quicksort algorithm using in place updatindy@s correct by the
analysis.

Jones and Le Métayer [10] use also abstract interpretatioa first order,
eager functional language with non-homogeneous listsdardo avoid allocation
of fresh cells and to reuse instead cells not needed by thefree computation.
Their analysis is a combination of sharing and absence s@esilgnd the abstract
domains are nested tuples of booleans. Again, domains ared®o be finite by
bounding the nesting depth of the tuples by an arbitrary rmrmbThe analysis
looks rather complex and not very efficient as it does sevexatrsals of the same
code. Also the authors do not show evidence of having imphteakit.

Inoue et al [9] use non-standard techniques, such as cdinéextanguages
and intersection between such languages, in order to peidarbage collection
at compile time. The language analyzed is a first order sulfddSP. The idea
is to detect cells created by a function and not belongingéa¢sult. Such those
cells are disposed at the end of the function body. They shmwd gesults for

18

some LISP test programs. In the logic programming field, Gus§on et al [4]
provide a comprehensive survey of sharing analyses. Shiarimportant here for
much the same reasons than in the functional field but alsetexctopportunities
for parallel evaluation.

The main novelty of our approach is, on the one hand the coratexfunc-
tional language with explicit destruction— and on the othemodularity. In
the previously described works, the analyses are done atttbke program level
while ours is done function by function. Reflecting the réstila function anal-
ysis in a signature provides the connection between therdifit functions of the
program. The subsequent safety analysis, based on a spgmatystem, will
also be done function by function, so the sharing signatarelie seen as an
annotation associated to the function type.

We find our sharing analysis to be precise enough for suadgsahalysing
the examples we have tried so far, but its quality will be eatdd when both
phases, the sharing and the safety analysis, work togdtheisafety type system,
not described here, has some characteristics of lineas tigee [14] as a basic
reference and [6] as a nearer one) and, as it has already &€eit beavily uses
the result of the sharing analysis.

As future work, we will prove the correctness of the analyéth respect to
the small-step operational semantics (not shown in thigpagf the language.
Also, as we have already said, the region annotationsvi@be inferred so that
the programmer will forget about regions: each data strectwt sharing any
substructure with the function result will be consideredalp and consequently
built in the working (self) region of the function. The resttbem will be built in
the output region.

Our final aim is to develop a type based analysis that autcaitiinfers
memory consumption. A sized-types system could automadteciion reasoning
like the one mentioned in Section 1.5.

REFERENCES

[1] S. Adams. Efficient sets —a balancing actournal of Functional Programming
3(4):553-561, 1993.

[2] A. Aiken, M. Fahndrich, and R. Levien. Better static mamy management: im-
proving region-based analysis of higher-order langualgeBroceedings of the ACM
SIGPLAN 1995 conference on Programming language designrapttmentation,
PLDI'95, pages 174-185. ACM Press, 1995.

[3] L. Birkedal, M. Tofte, and M. VejIstrup. From region infence to von neumann
machines via region representation inference Cémference Record of POPL '96:
The239 ACM SIGPLAN-SIGACTpages 171-183, 1996.

[4] G. Gudjonsson and W. H. Winsborough. Compile-time mgmeuse in logic pro-
gramming languages through update in pla8€M TOPLA$21(3):430-501, 1999.

[5] F. Henglein, H. Makholm, and H. Niss. A direct approachctmtrol-flow sensi-
tive region-based memory management.Phoceedings of the 3rd ACM SIGPLAN

19

international conference on Principles and Practice of eative Programming,
PPDP’01, pages 175-186. ACM Press, 2001.

[6] M. Hofmann and S. Jost. Static prediction of heap spaegedor first-order func-
tional programs. IfProceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 185-197. ACM Press, 2003.

[7] P. Hudak. A Semantic Model of Reference Counting and listfaction. IrLisp and
Functional Programming Conferencpages 351-363. ACM Press, 1986.

[8] R.J. M. Hughes and L. Pareto. Recursion and Dynamic B#taetures in Bounded
Space; Towards Embedded ML Programming.Phoceedings of the Fourth ACM
SIGPLAN International Conference on Functional ProgramgnilCFP’99 ACM
Sigplan Notices, pages 70-81, Paris, France, Septemb@r A@M Press.

[9] K. Inoue, H. Seki, and H. Yagi. Analysis of Functional Brams to Detect Run-Time
Garbage CellsACM TOPLAS10(4):555-578, 1988.

[10] S. B. Jones and D. Le Metayer. Compile Time Garbage Cdie by Sharing Anal-

ysis. InInt. Conf. on Functional Programming and Computer Architee, pages
54-74. ACM Press, 1989.

[11] R. Pefia and C. Segura. A First-Order Functional Lagguar Reasoning about
Heap Consumption. 1&6th International Workshop on Implementation and Appli-
cation of Functional Languages, IFL'04. Technical Repat®8, Christian-Albrechts
University of Kie| pages 64-80, 2004.

[12] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. &len, and P. Sestoft. Pro-
gramming with regions in the MLKit (revised for version QR. Technical report, IT
University of Copenhagen, Denmark, 2006.

[13] M. Tofte and J.-P. Talpin. Region-based memory managgminformation and
Computation132(2):109-176, 1997.

[14] P. Wadler. Linear types can change the world!IRiP TC 2 Working Conference on
Programming Concepts and Methodi¢orth Holland, 1990.

20

