
Chapter 1

A Sharing Analysis for SAFE
Ricardo Peña1, Clara Segura1, Manuel Montenegro1

Abstract: We present a sharing analysis for the functional languageSafe. This
is a first-order eager language with facilities for programmer-controlled destruc-
tion and copying of data structures. It provides alsoregions, i.e. disjoint parts
of the heap where the programmer may allocate data structures. The analysis
gives upper approximations to the sets of variables respectively sharing a recur-
sive substructure, or any substructure, of a given variable. Its results will be used
to guarantee that destruction facilities and region management are done in a safe
way. In order to have a modular and efficient analysis, we provide signatures for
functions, which summarize their sharing behaviour. The paper ends up describ-
ing the implementation of the analysis and some examples.

1.1 INTRODUCTION

Many imperative languages offer low level mechanisms to allocate and free heap
memory, which the programmer may use in order to dynamicallycreate and de-
stroy pointer based data structures. These mechanisms givethe programmer com-
plete control over memory usage but are very error prone. Well known problems
that may arise when using a programmer-controlled memory management are
dangling references, undesired sharing between data structures with complex side
effects as a consequence, and polluting memory with garbage.

Functional languages usually consider memory management as a low level
issue. Allocation is done implicitly and usually a garbage collector takes care of
the memory exhaustion situation.

In a previous paper [11] we proposed a semi-explicit approach to memory
control by defining a functional language, calledSafe, in which the programmer
cooperates with the memory management system by providing some information

1Dpto. Sistemas Informáticos y Computación, Univ. Complutense de Madrid, Spain
ricardo@sip.ucm.es,csegura@sip.ucm.es, manuelmont@gmail.com
Work partially supported by the Spanish project TIN2004-07943-C04.

1

about the intended use of data structures. For instance, theprogrammer may
indicate that some particular data structure will not be needed in the future and
that, as a consequence, it may be safely destroyed by the runtime system and
its memory recovered. The language uses regions to locate data structures. It
also allows controlling the degree of sharing between different data structures. A
garbage collector is not needed. Allocation and destruction of data structures are
done as execution proceeds.

More interesting is the definition of a type system guaranteeing that destruc-
tion facilities and region management can be done in a safe way. This type system
will be the main topic of an ongoing paper (a draft version canbe found at [11]).
In particular, it guarantees that dangling pointers are never created in the live heap.
An ill-constructed program is rejected by the type system. It makes a heavy use of
sharing information, given by two functions calledshareallandsharerec. Given
a subexpressione of a function body and a free variablex such thate is included
in the lexical scope ofx,

• shareall(x,e) returns the set of all the variables in scope inewhich, at runtime,
may share any substructure of the structure pointed to byx.

• sharerec(x,e) returns the set of all the variables in scope inewhich, at runtime,
may share any recursive substructure of the structure pointed to byx.

In this paper an upper approximation to these two functions is computed at
compile time by an abstract interpretation-like analysis.Additionally we formally
define the operational semantics of the language.

The structure of the paper is as follows: In Section 1.2, we provide a summary
of the syntax and the operational semantics ofSafe. Then, Section 1.3 presents
in detail the sharing analysis. In Sections 1.4 and 1.5, the implementation of the
analysis is described and it is applied to some illustrativeexamples. Section 1.6
surveys some related work and concludes.

1.2 SUMMARY OF SAFE

1.2.1 Syntax

We start by reproducing some crucial definitions which underlie the language. In
Section 1.6 we compare our language design with other approaches using regions
and memory management facilities.

Definition 1.1. A region is a contiguous memory area in the heap where data
structures can be constructed, read, or destroyed. It is allocated and freed as a
whole, in constant time.

Definition 1.2. A cell is a small memory space, big enough to hold a data con-
structor. In implementation terms, a cell contains the mark(or code pointer) of
the constructor, and a representation of the free variablesto which the constructor
is applied. These may consist, either of basic values, or of pointers to non-basic
values.

2

Definition 1.3. A data structure, in the following a DS, is the set of cells obtained
by starting at one cell considered as the root, and taking thetransitive closure of
the relation C1 → C2, where C1 and C2 are cells of the same type T , and in C1

there is a pointer to C2.

That means that, for instance in a list of type[[a]], we are considering
as a DS the cons-nil spine of theoutermostlist, but not those belonging to the
individual innermost lists. Each one of the latter constitute a separate DS.

The following decisions were taken:

1. A DS completely resides in one region.

2. One DS can be part of another DS, or two DSs can share a third one.

3. The basic values —integers, booleans, etc.— do not allocate cells in regions.
They live inside the cells of DSs, or in the stack.

4. A function ofn parameters can access:

• Its n parameters, each one residing in a possibly different region.

• Its output region, whenever it builds a DS as a result. There is at most one
output region per function. Delivering this region identifier as a parameter
is the responsibility of the call. We force functions to leave their result in
an output region belonging to the calling context in order tosafely delete
the intermediate results computed by the function.

• Its (optional)working region, referred to through the reserved identifier
self, where it may create intermediate DSs. The working region has the
same lifetime as the function call: It is allocated at each invocation and
freed at function termination.

5. If a parameter of a function is a DS, it can be destroyed by the function. We
will say that the parameter iscondemnedbecause this capability depends on
the function definition, not on its use.

6. The capabilities a function has on its accessible DSs and regions are: a func-
tion may only read a DS which is a read-only parameter; a function may read
(before destroying it), and must destroy, a DS which is a condemned param-
eter; a function may construct, read, or destroy DSs, in either its output or its
working region.

The syntax ofSafeis shown in Figure 1.1. This is a first-order eager functional
language where sharing is expressed using variables in function and constructor
applications. We intendSafeto be a core language resulting from the desugaring
of a higher level language similar to Haskell or ML. The analysis defined in this
paper is however done at core level. This is a usual approach in many compilers.

A programprog in Safeis a sequence of possibly recursive polymorphic func-
tion definitions3 followed by a main expressionexpr, calling them, whose value

3The extension to mutual recursion would pose no special problems, but we restrict
ourselves to non-mutual recursion in order to ease the presentation.

3

prog → dec1; . . . ;decn;expr
dec → f xi

n r = expr {recursive, polymorphic function}
| f xi

n = expr
expr → a {atom: literalc or variablex}

| x@r {copy}
| x! {reuse}
| (f ai

n)@r {function application}
| (f ai

n) {function application}
| (C ai

n)@r {constructor application}
| let x1 = expr1 in expr {non-recursive, monomorphic}
| casex of alti

n
{read-only case}

| case! x of alti
n

{destructive case}
alt → C xi

n → expr

FIGURE 1.1. First-order functional languageSafe

is the program result. Function definitions building and returning a new DS will
have an additional parameterr, which is the output region, where the resulting DS
is to be constructed. In the right hand side expression onlyr and its own working
regionself may be used. Polymorphic algebraic data types definitions are also
allowed. We will assume they are defined separately throughdata declarations.

The program expressions include variables, literals, function and constructor
applications, and alsolet andcaseexpressions, but there are some additional ex-
pressions:

If x is a DS, the expressionx@r represents a copy in regionr of the DS ac-
cessed fromx. The DSx must live in a regionr ′ 6= r. Both x andx@r have the
same recursive structure and they share their non-recursive substructures.

The expressionx! means the reusing of the destroyable DS to whichx points.
This is useful when we do not want to destroy completely a condemned parameter
but instead to reuse part of it. In semantic terms,x and x! point to the same
physical structure but, in language terms, oncex! is used, the namex becomes
unaccessible in the subsequent text.

In function application we have a special syntax @r to express the inclusion
of the additional output region parameter. Using the same syntax, we express that
a constructor application is to be allocated in regionr.

Thecase! expression indicates that the outer constructor ofx is disposed after
the pattern matching so thatx is not accessible anymore. The recursive substruc-
tures may be explicitly destroyed in the subsequent code viaanothercase! or
reused viax!. A condemned variable may be read but, once its content has been
destroyed or reused in another structure, it may not be accessed again. This is
what the type system guarantees. It annotates the type of such variable with a !.

We show now with several examples how to use the language facilities. In
some of them we will writex! or (C ai

n)@r as actual parameters of applications
in order to abbreviate, when alet binding would in fact be needed. In these exam-
ples we show also the types that the functions have in the typesystem previously

4

revD :: ∀a,ρ1,ρ2.[a]!@ρ1 → ρ2 → [a]@ρ2

revD xs r= (revauxD xs[]@r)@r

revauxD:: ∀a,ρ1,ρ2.[a]!@ρ1 → [a]@ρ2 → ρ2 → [a]@ρ2

revauxD xs ys r= case! xsof
[] → ys
x : xx→ (revauxD xx(x : ys)@r)@r

FIGURE 1.2. Destructive list inversion

insertD:: ∀a,ρ.a→ Tree a!@ρ → ρ → Tree a@ρ
insertD x t r= case! t of

Empty → (Node Empty@r x Empty@r)@r
Node i y d→ let c = compare x y

in casec of
LT → (Node(insertD x i)@r y d!)@r
EQ→ (Node i! y d!)@r
GT→ (Node i! y (insertD x d)@r)@r

FIGURE 1.3. Destructive insertion with reuse in a binary search tree

mentioned. The first example is the function that reverses a list and, at the same
time, destroys it. The code is shown in Figure 1.2. We use the usual auxiliary
function with an accumulator parameter. Notice that the differences with the usual
functional version are, on the one hand, the use of the regionparameterr and, on
the other, that acase! is used over the original list. The recursive application of
the function destroys it completely. Those who callrevD should know that the
argument is lost in the inversion process, and should not tryto use it anymore.
This is reflected in the type of the first argument with a ! annotation.

The next example illustrates the reuse of a condemned structure. It is the
function, shown in Figure 1.3, that inserts an element in a binary search tree in
such a way that the original tree is partially destroyed. Everything but the path
from the root to the inserted element is reused to build the new tree but these parts
can no longer be accessed from the original tree.

Notice that when the inserted element is already in the tree (EQ branch) the
tree t that has just been destroyed is rebuilt. The purely functional version is
obtained by removing the ! annotations and returningt in theEQbranch.

1.2.2 Big-Step Operational Semantics

We have developed a big-step operational semantics for thislanguage and a small-
step operational semantics which have been proved equivalent. In Figure 1.4 we
show the big-step operational semantics forSafeexpressions. Ajudgment of the

5

∆,k : c⇓ ∆,k : c [Lit]

∆,k : Cai
n@j ⇓ ∆,k : Cai

n@j [Cons]

∆[p 7→ w],k : p⇓ ∆,k : w [Var1]

j ≤ k l 6= j (Θ,Ca′i
n
) = copy(∆, j,Cai

n)

∆[p 7→ (l ,Cai
n)],k : p@j ⇓ Θ,k : Ca′i

n
@j

[Var2]

∆∪ [p 7→ w],k : p! ⇓ ∆,k : w [Var3]

Σ ⊢ f xi
n = e ∆,k+1 : e[ai/xi

n
,k+1/self] ⇓ Θ,k′ +1 : v

∆,k : f ai
n ⇓ Θ |k′ ,k

′ : v
[App1]

Σ ⊢ f xi
n r = e ∆,k+1 : e[ai/xi

n
,k+1/self, j/r] ⇓ Θ,k′ +1 : v

∆,k : f ai
n@j ⇓ Θ |k′ ,k

′ : v
[App2]

∆,k : e1 ⇓ Θ,k′ : c Θ,k′ : e[c/x1] ⇓ Ψ,k′′ : v

∆,k : let x1 = e1 in e⇓ Ψ,k′′ : v
[Let1]

∆,k : e1 ⇓ Θ,k′ : Cai
n@j j ≤ k′ fresh(p) Θ∪ [p 7→ (j,Cai

n)],k′ : e[p/x1] ⇓ Ψ,k′′ : v

∆,k : let x1 = e1 in e⇓ Ψ,k′′ : v
[Let2]

C = Cr ∆,k : er [a j/xr j
nr

] ⇓ Θ,k′ : v

∆[p 7→ (j,Cai
nr)],k : casep of Ci xi j

ni → ei
m
⇓ Θ,k′ : v

[Case]

C = Cr ∆,k : er [a j/xr j
nr

] ⇓ Θ,k′ : v

∆∪ [p 7→ (j,Cai
nr)],k : case! p of Ci xi j

ni → ei
m
⇓ Θ,k′ : v

[Case!]

FIGURE 1.4. SAFEbig-step operational semantics

form ∆,k : e⇓ Θ,k′ : v means that expressione is successfully reduced to normal
form v under heap∆ with k+1 regions, ranging from 0 tok, and that a final heap
Θ with k′ +1 regions is produced as a side effect.

A heap∆ is a function from fresh variablesp (in fact, heap pointers) to clo-
suresw of the form (j,Cai

n), meaning that the closure resides in regionj. If
[p 7→ w] ∈ ∆ and w = (j,Cai

n), we will say thatregion(w) = j and also that
region(p) = j.

A normal form v is either a basic valuec or a constructionCai
n@j to be

stored in regionj. The actual parametersai are either basic values or pointers
to other closures. Actual region identifiersj are just natural numbers. Formal
regions appearing in a function body are either the formal parameterr or the
constantself.

By ∆[p 7→ w] we denote a heap∆ where the binding[p 7→ w] is highlighted. In
contrast, by∆∪ [p 7→ w] we denote the disjoint union of heap∆ with the binding
[p 7→ w].

The semantics of a completeSafeprogramd1; . . . ;dn;e (not shown) is the se-
mantics of the main expressione in an environmentΣ containing the declarations

6

d1, . . . ,dn of all the functions.
RulesLit andCons just say that basic values and constructions are normal

forms. RuleConsdoes not create a closure. Closures are actually created by rule
Let2 which is the only one allocating fresh memory.

Rule Var1 brings a copy of a closure into the main expression. RuleVar2
makes a complete copy of the DS pointed to by a variablep into a new region
j. Functioncopyfollows the pointers in recursive positions of the originalstruc-
ture residing in regionl and creates in regionj a copy of all recursive closures
except for the root closureCai

n. In our runtime system we foresee that some type
information is available so that it is possible to implementthis function.

Shouldcopyfind a dangling pointer during the traversal, the whole rule would
fail and the derivation would be stuck at this rule. If there is no failure, then
the main expression becomes a copyCa′i

n
of this root closure where the pointers

ai in recursive positions pointing to closures in regionl have been replaced by
pointersa′i to the corresponding closures in regionj. The pointers in non recursive
positions of all the copied closures are kept identical in the new closures. This
implies that both DSs, the old and the new, may share some sub-structures. For
instance, if the original DS is a list of lists, the structurecreated bycopyis a copy
of the outermost list, while the innermost lists become shared between the old and
the new list.

RuleVar3 is similar to ruleVar1 except for the fact that the binding[p 7→ w]
is deleted andp does not belong to the domain of the resulting heap. This action
may create dangling pointers in the living heap as some closures may have free
occurrences ofp.

RulesApp1 and App2 show when a new region is created. Notice that the
body of the function is executed in a heap withk+2 regions. That is, the formal
identifier self is bound to the new regionk+ 1 so that the function body may
create DSs in this region or pass this region as a parameter tofunction calls. By
Θ |k′ we denote the heapΘ restricted to closures belonging at most to regionk′.
In other words, before returning from the function, all closures created in region
k′ +1 are deleted. This action is another source of possible dangling pointers.

RulesLet1 andLet2 show the eagerness of the language: first, the auxiliary
expressione1 is reduced to normal form and then the main expression is evaluated.
The occurrences of the program variablex1 are replaced either by the normal form
if it is a basic value, or by a pointer to it if it is a construction. Notice also that a
construction is converted into a closure only if it is bound to a variable in alet.

Finally, ruleCaseis the usual one while ruleCase! expresses what happens in
a destructive pattern matching: the binding of the discriminant variablep disap-
pears from the heap. This action is the last source of possible dangling pointers.

Proposition 1.4.If ∆,k : e⇓ Θ,k′ : v is derivable, then k= k′.
Proof: Straightforward, by induction on the depth of the derivation.

In the following, we will feel free to write the derivable judgments as∆,k : e⇓
Θ,k : v.

By fv(e) we denote the set of free variables of expressione, excluding function

7

names and region variables, and byfrv(e), the set of free region variables ofe. By
Fresh, we denote the set of names from which the functionfresh in rule Let2
selects fresh names, and byN the set of natural numbers. Also, bydom(∆) and
range(∆) we denote the following sets:

dom(∆)
def
= {p | [p 7→ w] ∈ ∆}

range(∆)
def
=

S

{fv(w) | [p 7→ w] ∈ ∆}

Proposition 1.5.If e is an expression satisfying fv(e)⊆ Fresh and frv(e)⊆N, and
∆,k : e⇓ Θ,k : v is derivable, and range(∆)⊆ Fresh, then all judgments∆i ,ki : ei ⇓
Θi ,ki : vi of the derivation satisfy:

1. fv(ei)∪ fv(vi) ⊆ Fresh.

2. frv(ei)∪ frv(vi) ⊆ N.

Proof: By induction on the depth of the derivation.

For this reason, in the rules of Figure 1.4 we have systematically used letterp
—intended to mean a pointer— when referring to free variables, and letterj —
intended to mean a natural number— when referring to free region variables.

1.3 SHARING ANALYSIS

In this section we define an analysis that approximates the sharing relations be-
tween the variables of a program. At this point, Hindley-Milner types have already
been inferred (see implementation details in Section 1.4),so the analysis can ask
for the type of a variable through a function calledtype.

1.3.1 Sharing relations

In order to capture sharing, we define four different binary relations between vari-
ables:

Definition 1.6. Given two variables x and y, in scope in an expression,

1. x⊳∼y denotes that x is a recursive descendant of y.

2. x△∼y denotes that x shares a recursive descendant of y.

3. x⊳y denotes that x is any substructure of y.

4. x△y denotes that x shares any substructure of y.

In Figure 1.5 we illustrate these relations using trees to represent data struc-
tures in the heap. A black subtree represents a recursive substructure while a white
subtree represents any substructure (recursive or not).

8

x⊳∼y (SubR)

x

y

x△∼y (ShR)

x

y

x⊳y (Sub)

x

y

x△y (Sh)

x

y

FIGURE 1.5. Sharing relations

We note that all the four relations are reflexive,△ is also symmetric, and⊳∼
and ⊳ are transitive. Moreover, the following implications hold:

x⊳∼y⇒x⊳y⇒x△y
x⊳∼y⇒x△∼y⇒x△y

but ⊳ and△∼ do not necessarily imply each other.
The interpretation defined in Figure 1.6 does a top-down traversal of a pro-

gram, accumulating these relations as soon as bound variables become free vari-
ables.

Whenever convenient, non-symmetric relations can be read as functionsVar→
{Var}, giving R(x) the set of ally such thatyRx(i.e. (y,x) ∈ R) . Also we will
write R= [x→ S] to indicate thatS= R(x).

The symmetric relation△ is kept in a set of sets of variables. IfS∈ △ then
x△y for all x,y∈ S.

Based on the above considerations, we will define an abstractinterpretationS
(meaningsharing) which, given an expressionedelivers the following seven sets:

(SubRP,ShRP,SubP,SubR,ShR,Sub,Sh)

which contain respectively all the variableszsuch thate⊳∼z, e△∼z, e⊳z, z⊳∼e,
z△∼e, z⊳eandz△e, whereeRxandxRemeans that the normal form ofe, when
evaluated at runtime, is related tox throughR.

1.3.2 Function signatures

In order to achieve a modular analysis, we decide to reflect the result of the
analysis of a functionf in a function signature. We keep these signatures in
a function environmentρ. A function signatureρ(f) has the following type:
({Int},{Int},{Int},{Int},{Int},{Int}, {Int}).

The meaning of the seven sets is as above, except for the fact that these contain
only parameter indexes instead of all the (free and bound) variables of the body

9

expression. This is reasonable as the effect of a function should be completely
reflected in the relationship between the parameters and theresult.

In Figure 1.6 the interpretationS for expressions is defined. We explain it in
detail later. When applied to a function definitionf x1 . . .xn = e, it is straightfor-
ward to extract the signature of the function while computing the least fixpoint,
in case it is recursive. The interpretation of a definition adds the signature of the
new definition to the signatures environment:

Sd[[f x1 . . .xn = e]] ρ = fix (λρ.ρ [f → extract([x1, . . . ,xn],S[[e]] R0 R0 R0 R0 ρ)]) ρ0

where ρ0 = ρ [f → (/0, /0, /0, /0, /0, /0, /0)]
R0 = {(xi ,xi) | i ∈ {1..n}}
extract(xs,(S1, . . . ,S7)) = ({i | xi ∈ xs∩S1}, . . . ,{i | xi ∈ xs∩S7})

whereρ [f → s] either adds signatures for f or replaces it in case there was
already one for it. As functionSand functionextractare monotone over a finite
lattice, the least fixpoint exists and can be computed using Kleene’s ascending
chain.

Given a whole programP = dec1; . . .deck; e the analysis first builds an in-
creasing function environment and then analyses the main expression given ini-
tially empty relations (there are no free variables but function names):

Sp[[P]] = S[[e]] /0 /0 /0 /0 (Sd[[deck]] (. . . (Sd[[dec1]] []) . . .))

Notice that the right hand sides of the definitions are analysed given relations
where each parameter is only related to itself. This means that the signatures are
computed assuming that all the parameters are disjoint. When they are not, the
function application computes the additional sharing.

1.3.3 Interpretation of expressions

We explain now the details of the interpretationS for expressions. By abuse of
notation, we will writeSh(x) even thoughShis not a function, with the following
convention:

Sh(x)
def
=

[

{S| x∈ S∧S∈ Sh}

A basic valuec neither has substructures nor is part of any structure, so its
interpretation is just seven empty sets.

If x is returned as the result of a function, we use the information in the accu-
mulator parameters ofS to extract all the relevant information about its sharing.
Notice that, from the operational semantics point of view,x! is just the same struc-
ture asx, hence its interpretation. The semantics ofx@r is the creation of a copy
of the recursive part ofx in a new regionr. As a consequence, the first, third,
fourth and fifth sets of the interpretation are empty, and thethird set excludes
those variables with the same (recursive) type asx. The non-recursive part of
x@r is shared withx and potentially with any variable sharing substructures with
x, hence the seveth set. However only the non-recursive children of x may be
children ofx@r, hence the sixth set.

10

S [[c]] SubR ShR Sub Shρ = (/0, /0, /0, /0, /0, /0, /0)

S [[x]] SubR ShR Sub Shρ = ({z | x∈ SubR(z)},
{z | x∈ ShR(z)},
{z | x∈ Sub(z)},
SubR(x),ShR(x),Sub(x),Sh(x))

S [[x!]] SubR ShR Sub Shρ = S [[x]] SubR ShR Sub Shρ

S [[x@r]] SubR ShR Sub Shρ = (/0,
{z | x∈ ShR(z)∧ type(z) 6= type(x)},
/0, /0, /0,

Sub(x)−SubR(x),Sh(x))

S [[g ai
m@r]] SubR ShR Sub Shρ = ({z | ∃ j ∈ SubRPg.a j ∈ SubR(z)},

{z | ∃ j ∈ ShRPg.a j ∈ ShR(z)},
{z | ∃ j ∈ SubPg.a j ∈ Sub(z)},
S

j{SubR(a j) | j ∈ SubRg},
S

j{ShR(a j) | j ∈ ShRg},
S

j{Sub(a j) | j ∈ Subg},
S

j{Sh(a j) | j ∈ Shg})

where (SubRPg,ShRPg,SubPg,SubRg,ShRg,Subg,Shg) = ρ(g)

S [[C ai
m@r]] SubR ShR Sub Shρ = (/0,

{z | ∃a j ∈ ShR(z)},
/0,
S

j{SubR(a j) | j ∈ RecPos(C)},
S

j{ShR(a j) | j ∈ RecPos(C)},
S

j{Sub(a j) | j ∈ {1..m}},
S

j{Sh(a j) | j ∈ {1..m}})

S [[let x1 = e1 in e]] SubR ShR Sub Shρ = (S [[e]] SubR2 ShR2 Sub2 Sh2 ρ)\{x1}

where (SubRP1,ShRP1,SubP1,SubR1,ShR1,Sub1,Sh1) = S [[e1]] SubR ShR Sub Shρ
SubR2 = (SubR∪ [x1 7→ SubR1]∪{[z 7→ {x1}] | z∈ SubRP1})∗

ShR2 = ShR∪ [x1 7→ ShR1]∪{[z 7→ {x1}] | z∈ ShRP1}∪SubR2
Sub2 = (Sub∪ [x1 7→ Sub1]∪{[z 7→ {x1}] | z∈ SubP1})

∗

Sh2 = Sh∪{{x1}∪Sh1}⊎ (Sub2∪ShR2)

S [[casexofCi xi j
ni → ei]]SubRShRSubShρ =

S

i((S [[ei]] SubRi ShRi Subi Shi ρ)\{xi j
ni})

whereSubRi = (SubR∪ [x 7→ {xi j | j ∈ RecPos(Ci)}]
∪{[xi j 7→ SubR(x)\{x}] | j ∈ RecPos(Ci)})

∗

ShRi = ShR∪{[xi j 7→ ShR(x)] | j ∈ RecPos(Ci)}∪SubRi
Subi = (Sub∪ [x 7→ {xi j | j ∈ {1..ni}]∪{[xi j 7→ Sub(x)\{x}] | j ∈ {1..ni}})

∗

Shi = (Sh∪{{y,xi j } | y∈ Sh(x)∧ j ∈ {1..ni}})⊎ (Subi ∪ShRi)

FIGURE 1.6. Definition of the abstract interpretation S

11

The interpretation of a function applicationg ai
m@r returning a DS is rather

involved. Regarding the first set, the recursive descendantrelation is transitive.
So, the result ofg is a recursive descendant of a variablez if and only if an actual
parametera j of g is a recursive descendant ofz and the result ofg is a recursive
descendant ofa j . The same transitivity applies to the third set. Regarding the
second set, the result ofg shares a recursive descendant of a variablez if an actual
parametera j of g shares a recursive descendant ofz, anda j is in sharing relation
with the result ofg. This probably will give us more variables than the ones
actually sharing a recursive descendant ofz, but it is a safe approximation. This
is a place where signatures may lose information. The fourthand sixth sets are
defined taking respectively into account the transitivity of the relations⊳∼ and
⊳ . The fifth and seventh sets are safe, but may be imprecise, approximations
to respectively the set of variables sharing a recursive substructure and sharing
any substructure with the result ofg. The interpretation of a function application
g ai

m of a functiong not having an output region as a parameter is identical to the
previous one.

In the interpretation of a data constructionC ai
m@r, the first and third sets are

empty because a newly created DS cannot be a substructure of any other. How-
ever, it will share a recursive descendant of a variablez if any of its substructures
a j already shared it. Any variable being a recursive descendant of a recursive pa-
rametera j of C will also be a recursive descendant of the construction. Theset
RecPos(C) contains the recursive positions of the constructorC. Similar reason-
ing can be applied to the fifth set containing the variables which share a recursive
descendant of the construction. The next set definition exploits the transitivity of
the ⊳ relation. The last set consists also of a union over all the parameters ofC,
because the construction inherits the sharing of all its substructures.

Thelet expression introduces a new bound variablex1 which may appear free
in the main expressione. First, the interpretation of the auxiliary expressione1 is
launched and the sharing created by it is accumulated in the parameters. Then, the
main expressione is interpreted taking into account the new sharing. IfR repre-
sents a reflexive, non-symmetric, transitive relation, byR∗ we mean its reflexive,
transitive closure. Operator⊎ computes the union of a reflexive, symmetric and
non-transitive relation and a reflexive, non-symmetric transitive one. Notice that
the addition ofSubR2 to ShR2, and the addition of this latter set and that ofSub2 to
Sh2 just implements the inclusion of the underlying relations,as explained above.
Finally, the information related tox1 is deleted as the variable will not be in scope
in the context.

As usual, the interpretation of acaseis the least upper bound of the inter-
pretation of its alternatives, and this involves a loss of information. Before each
alternative is interpreted, we accumulate the sharing of the bound variablesxi j

introduced by it. Part of this sharing is straightforward: all these variables are
descendants of the parent structurex and some of them are recursive descendants
of it. Additionally, if we havey∈ SubR(x)∧y 6= x, that meansy⊳∼x. As there is
no more information available, it may be the case thaty⊳∼xi j for some recursive
child of x. The only safe way to cope with this possibility is to includein SubRi

12

the pairsy⊳∼xi j for all the recursive children ofx. Similar reasoning applies to
the rest of the sets.

The interpretation ofcase! is the same as the previous one. Although the
discriminant variable is being condemned we cannot eliminate its sharing infor-
mation as we do not know whether the rest of variables are safely used. For
example, we could writez= case! x of C y→ x. The analysis says that variables
x andz share a substructure, although such sharing is unsafe becausex has been
destroyed.

1.4 IMPLEMENTATION AND EXAMPLES

In this section we present the implementation of the analysis and give some ex-
amples of functions to which it has been applied. We have defined a concrete sug-
ared syntax forSafein which programs look very much like Haskell programs,
i.e. functions are defined by means of equations and pattern matching, guards and
where clauses are allowed, as well as data type declarations and infix operators
and constructors.

A complete front-end has been developed from scratch by using standard tools
such as lexical analyzer and parser generators. In Figure 1.7 we show its (already
implemented) phases. The renamer phase ensures that every identifier is well de-
fined and that every bound variable is given a different name.A Hindley-Milner
type inference is done at this level in order to reject ill-typed programs, and to
provide report messages related to the sugared syntax. Also, the sharing analysis
needs the underlying type of a variable and the recursive positions of data con-
structors (cf. Figure 1.6). This phase decorates each expression in the abstract
syntax tree with its Hindley-Milner type.

The desugarer transforms the high-level syntax into theSafecore syntax pre-
sented in Section 1.2. During this transformation new boundvariables may be
introduced. They are given appropriate types and fresh names.

After these steps, the sharing analysis described in this paper is done. Its main
function has the following type:

analyzePrg :: Prog TypeExp -> Prog (TypeExp, Maybe ShareInfo)

That is, given a program decorated with Hindley-Milner types, it returns a pro-
gram additionally decorated with sharing information. This sharing information
has different shapes depending on the entity being decorated:

• If it is a function definition, it consists of its signature.

• If it is a let or acase! expression, it consists of the sharing information accu-
mulated from the beginning of the function body this expression belongs to, up
to the root of the expression. These are the only expressionswhere we need to
keep the sharing information, which consists of the seven sets corresponding
to the variable either defined by thelet expression, or inspected by thecase!
expression.

• Binding occurrences of variables are not decorated.

13

Parser
↓

Renamer
↓

Hindley-Milner

↓

Desugarer

↓

Sharing Analysis

↓

Safe Types

FIGURE 1.7. Phases of the Safe compiler implementation

In this way, it is easy to extract theshareallandsharerecsets for any given vari-
ablex in any given context. Then,ShR(x) andSh(x) give us the desired informa-
tion. Such information is used in the following phase, whoseresult consists of
Hindley-Milner types decorated with destruction (!) annotations, i.e.Safetypes.
This phase is also implemented but it is not part of this paper.

The front-end and the analysis have been implemented in Haskell using the
GHC to compile it. In total, about 3,000 Haskell lines have been written. In order
to improve efficiency, the analyzer stores the four relations in a single balanced
tree, using the modulesMap andSet of the GHC library [1]. Also, the inverses
of the three first relations are kept in the tree. In this way, the symmetric and/or
transitive closures, the union, and some other operations on relations needed by
the analysis, are done in a more concise and efficient way. Letn be the number
of bound variables of a function body,m the size of its abstract syntax tree, and
p the number of function arguments. Then, the analysis cost isin O(nmp) in the
worst case. The analysis of a function can be done independently of each other.

When applied to the functions defined in Section 1.2, the analysis computes
the following signatures:

ρ(revauxD) = ({2},{2},{2},{2},{2},{2},{1,2})
ρ(revD) = (/0, /0, /0, /0, /0, /0,{1})
ρ(insertD) = (/0,{1,2}, /0, /0,{2},{1},{1,2})

which are accurate descriptions of the input-output sharing relations of these func-
tions.

FunctionrevauxDappends the reverse of its first parameter to its second one.
Since it does not reuse the recursive cells of its first parameter, the only remaining
recursive sharing is related to its second parameter. Nevertheless the sharing with
the non recursive elements of the first list is reflected in thelast set of the signature.
FunctionrevD consists of a simple call torevauxDpassing it an empty list as the
second actual parameter, so the only remaining sharing is that between the non-

14

splitD :: ∀a,ρ.Int → [a]!@ρ → ρ → ([a]@ρ, [a]@ρ)@ρ
splitD 0 xs! r = ([]@r,xs!)@r
splitD n []! r = ([]@r, []@r)@r
splitD n (x : xs)! r = ((x : xs1)@r,xs2)@r

where (xs1,xs2) = splitD (n−1) xs r

mergeD:: ∀a,ρ.[a]!@ρ → [a]!@ρ → ρ → [a]@ρ
mergeD[]! ys! r = ys!
mergeD(x : xs)! []! r = (x : xs!)@r
mergeD(x : xs)! (y : ys)! r =

| x≤ y = (x : mergeD xs(y : ys!)@r @r)@r
| otherwise= (y : mergeD(x : xs!)@r ys@r)@r

msortD:: ∀a,ρ.[a]!@ρ → ρ → [a]@ρ
msortD xs r

| n≤ 1 = xs!
| otherwise= mergeD(msortD xs1 @r) (msortD xs2 @r) @r

where (xs1,xs2) = splitD (n ‘div‘ 2) xs@r
n = length xs

FIGURE 1.8. Destructive mergesort

recursive structures of the input and output lists.
Function insertD builds a new tree which shares with the original tree ev-

erything but the path from the root to the inserted element. This means that the
resulting tree and the original one share both recursive andnon-recursive parts.
This is the reason why 2 appears in the second, fifth and seventh sets of the sig-
nature. Also the resulting tree hasx as a non-recursive descendant, so the 1 in the
second, sixth and seventh sets.

1.5 A MORE INVOLVED EXAMPLE

In this section we show a more involved example, amergesortalgorithm. In order
to give compact code, the functions shown in this section aresugared although the
analysis is executed over their desugared versions.

First, we define auxiliary functions to split the input list and merge two ordered
lists in a single ordered list. In Figure 1.8 (top) we show a destructive version of
the splitting function. As in the previous examples, there are small differences
with a purely functional version. In the base case (n = 0) we reuse the list in the
output; in the recursive case we use acase! (written as a destructive pattern) over
the argument list. We also have to add @r where necessary.

The sharing analysis produces the following signature for this function:

ρ(splitD) = (/0,{2}, /0, /0, /0,{2},{2})

15

meaning that:

• The result of the function may share a recursive substructure of the argument
list, which is obvious.

• The argument list may be a child of the result, which is true whenn is 0.

• The argument list and the result share some substructure, which again is obvi-
ous.

Figure 1.8 (middle) shows the destructive version of the merging function. In
the recursive calls tomergeDone of the parameters is one of the original lists.
But the original list may not be referenced as its top cell hasbeen destroyed by
a case!, so the original list is rebuilt by reusing its components.This is the only
detail to care about.

The sharing analysis produces the following signature for this function:

ρ(mergeD) = ({2},{1,2},{2},{2},{1,2},{2},{1,2})

meaning that the argument lists and the result may share recursive and non-recursive
substructures one of the other. Notice that only the second argument list may be a
recursive child of the result (and viceversa) because we build a new cell for each
cell of the first argument while we reuse the second argument list when the first
one is empty.

Finally, in Figure 1.8 (bottom) we show the destructive mergesortmsortD, that
uses the previously defined functions. Both the input listxsand the intermediate
results are either destroyed or reused into the result. Thisallows us to conclude
that this function consumes a constant additional heap space. In [11] we proved
this by induction on the length of the argument list. The sharing analysis produces
the following signature for this function:

ρ(msortD) = ({1},{1},{1},{1},{1},{1},{1})

meaning that the argument list and the result may share recursive and non-recursive
substructures one of the other.

Recall that this sharing analysis does not take into accountthe fact that some
substructures are destroyed because it is not known yet whether the program is
type-safe. In this sense the analysis is an upper approximation of the sharing.

1.6 RELATED WORK AND CONCLUSIONS

Several approaches have been taken to memory management, some of which have
inspired our work. In [5] a comparison of some of them are presented by using a
Game of Life example:

nextgen g= {create and return new generation}
life n g= if n = 0 then g

elselife (n−1) (nextgen g)

16

Assuming that a generationg is a big data structure allocated in the heap, a func-
tional program like this would allocaten generations in the heap until a garbage
collector would decide to dispose the intermediate ones. However, if the intended
use of one intermediate generation is only the creation of the next one, it seems
reasonable to dispose the intermediate data structure as soon as posible. InSafe
we would modify the program as follows in order to get such behaviour:

nextgen g r= case! g of → . . .
{create new generation in region r}

life n g r = if n = 0 then g! {reuse argumentg}
elselife (n−1) (nextgen g@r)@r

Tofte and Talpin [13] introduced the use of nested regions with a letregion ρ
construct as an extension to Core ML. Like ours, regions are memory areas where
DSs can be constructed, and they are allocated and deallocated as a whole. A
difference is that, in our system, region allocation/deallocation are synchronized
with function calls. Also, we have an additional mechanism that allows us to
selectively destroy DSs in the working or in the output region. In their framework,
in the previous example a single region is forced to contain all the intermediate
data structures and no memory advantages are obtained.

An extension to their work [3, 12] allows toresetall the data structures in
a region whithout deallocating the whole region. In the previous example the
old generation region is resetted once the new generation iscreated. So, a new
temporary region is created to allocate the new generation which must be copied
into the output region after resetting it. The user is responsible for introducing the
copy functions but not for annotating the program with resetting annotations.

nextgen g= {create and return new generation}
life n g= if n = 0 then g

elselife (n−1) (copy (nextgen g))

The copyfunction allows to build the new generation in a separated region and
makes possible to runlife in constante heap space. However this version may
waste a lot of time just in copying, once for each recursive call. Additionally,
inserting thecopyfunction requires a deep knowledge of the resetting mechanism
as this is not explicit in the program. In our opinion, thecase! annotation is more
intuitive: the user just says that the old generation may be liberated as it will not
be used anymore. And it is only said for a particular data structure, not for the
whole region.

The AFL system [2] inserts (as a result of an analysis) allocation and deallo-
cation commands separated from theletregion construct which now only brings
new regions into scope. In the example, this allows to free the old region as soon
as the new generation is computed, without needing a copy in each recursive call.
This is only required in the base case:

nextgen g= {create and return new generation}
life n g= if n = 0 then copyg

elselife (n−1) (nextgen g)

17

Again, inserting thecopyfunction in the appropriate place requires a deep knowl-
edge of the annotations that will be inserted after the analysis.

Our region system is simpler than those of the above approaches and it does
not require such complex inference algorithms. Although the version of the lan-
guage presented here has explicit regions, we have designeda region inference
algorithm which hides them from the programmer. It is a simple extension of the
Hindley-Milner type inference one.

Hughes and Pareto [8] also incorporate in Embedded-ML the concept of re-
gion to their sized-types system so that heap and stack consumption can be type-
checked. In this approach, region sizes are bounded. Our main differences to
them are again the region-function association and the explicit disposal of struc-
tures. Their sized types system could be a good starting point for our future work,
as we also intend to compute region sizes at compile time.

More recently, in a proof carrying code framework, Hofmann and Jost [6]
have developed a type system to infer heap consumption. Theirs is also a first-
order eager functional language with a constructmatch′ which has inspired our
case!. They associate to each function the space required by its execution and
the remaining space after it. They also use a linear type system but they do not
achieve a complete safety in using destructive facilities.Unlike us they do not
use the concept of nested regions where DSs are allocated, sothat sharing is not
controlled in the same way.

There are many works devoted to sharing analysis in functional and logic lan-
guages, some of them rather old. In the functional field, the aim of most analyses
has been performing part of the garbage collection at compile time, or detecting
when destructive updating of data structures could be done safely.

In Hudak’s approach [7] a reference count of shared data is done at compile
time by using abstract interpretation on a first order, eagerfunctional language
with updatable arrays. The abstract domains consist of justnatural numbers. In
order to have a terminating analysis the domains are restricted to finite intervals
{1. . .n}, for an arbitraryn, and topped with∞ meaning ‘too much sharing’. An
array based quicksort algorithm using in place updating is shown correct by the
analysis.

Jones and Le Métayer [10] use also abstract interpretationon a first order,
eager functional language with non-homogeneous lists in order to avoid allocation
of fresh cells and to reuse instead cells not needed by the rest of the computation.
Their analysis is a combination of sharing and absence analyses and the abstract
domains are nested tuples of booleans. Again, domains are forced to be finite by
bounding the nesting depth of the tuples by an arbitrary number n. The analysis
looks rather complex and not very efficient as it does severaltraversals of the same
code. Also the authors do not show evidence of having implemented it.

Inoue et al [9] use non-standard techniques, such as contextfree languages
and intersection between such languages, in order to perform garbage collection
at compile time. The language analyzed is a first order subsetof LISP. The idea
is to detect cells created by a function and not belonging to the result. Such those
cells are disposed at the end of the function body. They show good results for

18

some LISP test programs. In the logic programming field, Gudjonsson et al [4]
provide a comprehensive survey of sharing analyses. Sharing is important here for
much the same reasons than in the functional field but also to detect opportunities
for parallel evaluation.

The main novelty of our approach is, on the one hand the context —a func-
tional language with explicit destruction— and on the otherits modularity. In
the previously described works, the analyses are done at thewhole program level
while ours is done function by function. Reflecting the result of a function anal-
ysis in a signature provides the connection between the different functions of the
program. The subsequent safety analysis, based on a specialtype system, will
also be done function by function, so the sharing signature can be seen as an
annotation associated to the function type.

We find our sharing analysis to be precise enough for successfully analysing
the examples we have tried so far, but its quality will be evaluated when both
phases, the sharing and the safety analysis, work together.The safety type system,
not described here, has some characteristics of linear types (see [14] as a basic
reference and [6] as a nearer one) and, as it has already been said, it heavily uses
the result of the sharing analysis.

As future work, we will prove the correctness of the analysiswith respect to
the small-step operational semantics (not shown in this paper) of the language.
Also, as we have already said, the region annotations @r will be inferred so that
the programmer will forget about regions: each data structure not sharing any
substructure with the function result will be considered local, and consequently
built in the working (self) region of the function. The rest of them will be built in
the output region.

Our final aim is to develop a type based analysis that automatically infers
memory consumption. A sized-types system could automate induction reasoning
like the one mentioned in Section 1.5.

REFERENCES

[1] S. Adams. Efficient sets –a balancing act.Journal of Functional Programming,
3(4):553–561, 1993.

[2] A. Aiken, M. Fähndrich, and R. Levien. Better static memory management: im-
proving region-based analysis of higher-order languages.In Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design andimplementation,
PLDI’95, pages 174–185. ACM Press, 1995.

[3] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von neumann
machines via region representation inference. InConference Record of POPL ’96:
The23rd ACM SIGPLAN-SIGACT, pages 171–183, 1996.

[4] G. Gudjónsson and W. H. Winsborough. Compile-time memory reuse in logic pro-
gramming languages through update in place.ACM TOPLAS, 21(3):430–501, 1999.

[5] F. Henglein, H. Makholm, and H. Niss. A direct approach tocontrol-flow sensi-
tive region-based memory management. InProceedings of the 3rd ACM SIGPLAN

19

international conference on Principles and Practice of Declarative Programming,
PPDP’01, pages 175–186. ACM Press, 2001.

[6] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order func-
tional programs. InProceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 185–197. ACM Press, 2003.

[7] P. Hudak. A Semantic Model of Reference Counting and its Abstraction. InLisp and
Functional Programming Conference, pages 351–363. ACM Press, 1986.

[8] R. J. M. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in Bounded
Space; Towards Embedded ML Programming. InProceedings of the Fourth ACM
SIGPLAN International Conference on Functional Programming, ICFP’99, ACM
Sigplan Notices, pages 70–81, Paris, France, September 1999. ACM Press.

[9] K. Inoue, H. Seki, and H. Yagi. Analysis of Functional Programs to Detect Run-Time
Garbage Cells.ACM TOPLAS, 10(4):555–578, 1988.

[10] S. B. Jones and D. Le Metayer. Compile Time Garbage Collection by Sharing Anal-
ysis. In Int. Conf. on Functional Programming and Computer Architecture, pages
54–74. ACM Press, 1989.

[11] R. Peña and C. Segura. A First-Order Functional Language for Reasoning about
Heap Consumption. In16th International Workshop on Implementation and Appli-
cation of Functional Languages, IFL’04. Technical Report 0408, Christian-Albrechts
University of Kiel, pages 64–80, 2004.

[12] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen, and P. Sestoft. Pro-
gramming with regions in the MLKit (revised for version 4.3.0). Technical report, IT
University of Copenhagen, Denmark, 2006.

[13] M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

[14] P. Wadler. Linear types can change the world! InIFIP TC 2 Working Conference on
Programming Concepts and Methods. North Holland, 1990.

20

