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Abstract. The paper presents the development, by using the proof as-
sistant Isabelle/HOL, of a compiler back-end translating from a func-
tional source language to the bytecode language of an abstract machine.
The Haskell code of the compiler is extracted from the Isabelle/HOL
specification and this tool is also used for proving the correctness of the
implementation. The main correctness theorem not only ensures func-
tional semantics preservation but also resource consumption preserva-
tion: the heap and stacks figures predicted by the semantics are confirmed
in the translation to the abstract machine.

The language and the development belong to a wider Proof Carrying
Code framework in which formal compiler-generated certificates about
memory consumption are sought for.

Keywords: compiler verification, functional languages, memory
management.

1 Introduction

The first-order functional language Safe has been developed in the last few years
as a research platform for analysing and formally certifying two properties of
programs related to memory management: absence of dangling pointers and
having an upper bound to memory consumption.

Two features make Safe different from conventional functional languages:
(a) the memory management system does not need a garbage collector; and
(b) the programmer may ask for explicit destruction of memory cells, so that
they could be reused by the program. These characteristics, together with the
above certified properties, make Safe useful for programming small devices where
memory requirements are rather strict and where garbage collectors are a burden
both in space and in service availability.

The Safe compiler is equipped with a battery of static analyses which infer
such properties [15,16,17,22]. These analyses are carried out on an intermediate
language called Core-Safe (explained in Sec. 2.1), obtained after type-checking
and desugaring the source language called Full-Safe. The back-end comprises
two more phases:

1. A translation from Core-Safe to the bytecode language of an imperative
abstract machine of our own, called the Safe Virtual Machine (SVM). We
call this bytecode language Safe-Imp and it is explained in Sec. 2.4.
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2. A translation from Safe-Imp to the bytecode language of the Java Virtual
Machine (JVM) [13].

We have proved our analyses correct and are currently generating Isabelle/HOL
[20] scripts which, given a Core-Safe program and the annotations produced by
the analyses, will mechanically certify that the program satisfies the properties in-
ferred by the analyses. The idea we are trying to implement, consistently with the
Proof Carrying Code (PCC) paradigm [18], is sending the code generated by the
compiler together with the Isabelle/HOL scripts to a hypothetical code consumer
who, using another Isabelle/HOL system and a database of previously proved the-
orems, will check the property and consequently trust the code. The annotations
consist of special types in the case of the absence of dangling pointers property, and
will consist of some polynomials when the space consumption analysis is finished.
At this point of the development we were confronted with two alternatives:

• Either to translate the properties obtained at Core-Safe level to the level of
the JVM bytecode, by following for instance some of the ideas of [2].

• Or to provide the certificates at the Core-Safe level. Then the consumer
should trust that our back-end does not destroy the Core-Safe properties, or
better, we should provide evidence that these properties are preserved.

The first alternative was not very appealing in our case. Differently to [2], where
the certificate transformation is carried on at the same intermediate language,
here the distance between our Core-Safe language and the target language is
very large: the first one is functional and the second one is a kind of assembly
language; new structures such as the frames stack, the operand stack, or the
program counter are present in the second but not in the first; we have built a
complete memory management runtime system on top of the JVM in order to
avoid its built-in garbage collector, etc. The translated certificate should provide
invariants and properties for all these structures. Even if all this work were done,
the size of the certificates and the time needed to check them would very probably
be huge. The figures reported in [26] for JVM bytecode-level certificates seem to
confirm this assertion.

The second alternative has other drawbacks. One of them is that the Core-
Safe program must be part of the certificate, because the consumer must be
able to relate the properties stated at source level with the low-level code being
executed. Providing the source code is not allowed in some PCC scenarios. The
second drawback is that the back-end should be formally verified, and both
the translation algorithm, and the theorem proving its correctness must be in
the consumer database. We have chosen this second alternative because smaller
certificates can be expected, but also because we feel that proving the translation
correct once for all programs is more reasonable in our case than checking this
correctness again and again for every translated program.

Machine-assisted compiler certification has been developed by several authors
in the last few years. In Sec. 6 we review some of these works. For the certifi-
cation being really trusty, the code running in the compiler’s back-end should
be exactly the same which has been proved correct by the proof-assistant. For-
tunately, modern proof-assistants such as Coq [4] and Isabelle/HOL provide
code extraction facilities which deliver code written in some wider-use languages
such as Caml or Haskell. Of course, one must trust the translation done by the
proof-assistant.
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In this paper we present the certification of the first pass explained above
(Core-Safe to Safe-Imp). The second pass (Safe-Imp to JVM bytecode) is cur-
rently being completed. The reader can find a preliminary version of it in [21].

The main improvement of this work with respect to previous efforts in com-
piler certification is that we prove, not only the preservation of functional se-
mantics, but also the preservation of the resource consumption properties. As
it is asserted in [11], this property can be lost as a consequence of some com-
piler optimisations. For instance, some auxiliary variables not present in the
source may appear during the translation. In our framework, it is essential that
memory consumption is preserved during the translation, since we are trying
to certify exactly this property. To this aim, we introduce at Core-Safe level a
resource-aware semantics and then prove that this semantics is preserved in the
translation to the abstract machine.

With the aim of facilitating the understanding of the paper, and also avoiding
descending to many low level details, we have made available the Isabelle/HOL
scripts at http://dalila.sip.ucm.es/safe/theories. We recommend the reader
to consult this site while reading in order to match the concepts described here
with its definition in Isabelle/HOL. The paper is structured as follows: after
this introduction, in Sec. 2 we motivate our Safe language and then present the
syntax and semantics of the source and target languages. Then, Sec. 3 explains
the translation and gives a small example of the generated code. Sections 2
and 3 contain large portions of material already published in [14,16]. We felt
that this material was needed in order to understand the certification process.
Sec. 4 is devoted to explaining the main correctness theorem and a number of
auxiliary predicates and relations needed in order to state it. Sec. 5 summarises
the lessons learnt, and finally a Related Work section closes the paper.

2 The Source and Target Languages

2.1 Full-Safe and Core-Safe

Safe is a first-order polymorphic functional language with a syntax similar to
that of (first-order) Haskell, and with some facilities to manage memory. The
memory model is based on heap regions where data structures are built. A
region is a collection of cells and a cell stores exactly one constructor application.
However, in Full-Safe regions are implicit. These are inferred [15] when Full-Safe
is desugared into Core-Safe. The allocation and deallocation of regions are bound
to function invocations: a working region is allocated when entering the call and
deallocated when exiting it. All data structures allocated in this region are lost.

Inside a function, data structures may be built but they can also be destroyed
by using a destructive pattern matching, denoted by the symbol !, which deallo-
cates the cell corresponding to the outermost constructor. Using recursion the
recursive spine of the whole data structure may be deallocated. As an example,
we show an append function destroying the first list’s spine, while keeping its
elements in order to build the result:

appendD []! ys = ys
appendD (x:xs)! ys = x : appendD xs ys

This appending needs constant (in fact, zero) additional heap space, while the
usual version needs linear additional heap space. The fact that the first list is lost
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prog → datai
n
; decj

m
; e {Core-Safe program}

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l
{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| x @ r {copy data structure x into region r}
| x! {reuse data structure x}
| a1 ⊕ a2 {primitive operator application}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e {case alternative}
be → C ai

n @ r {constructor application}
| e

Fig. 1. Core-Safe syntax

is reflected, by using the symbol ! in the type inferred for the function appendD ::
∀aρ1ρ2 . [a]!@ρ1 → [a]@ρ2 → ρ2 → [a]@ρ2 , where ρ1 and ρ2 are polymorphic types
denoting the regions where the input and output lists should live. In this case,
due to the sharing between the second list and the result, these latter lists should
live in the same region. Another possibility is to destroy part of a data structure
and to reuse the rest in the result, as in the following destructive split function:

splitD 0 zs! = ([], zs!)
splitD n []! = ([], [])
splitD n (y:ys)! = (y:ys1, ys2) where (ys1, ys2) = splitD (n-1) ys

The righthand side zs ! expresses reusing the remaining list. The inferred type is:

splitD :: ∀aρ1ρ2ρ3 . Int → [a]!@ρ2 → ρ1 → ρ2 → ρ3 → ([a]@ρ1, [a]@ρ2)@ρ3

Notice that the regions used to build the result appear as additional arguments.
The data structures which are not part of the function’s result are inferred to
be built in the local working region, which we call self, and they die at function
termination. As an example, the tuples produced by the internal calls to splitD
are allocated in their respective self regions and do not consume memory in the
caller regions. The type of these internal calls is Int → [a]!@ρ2 → ρ1 → ρ2 →
ρself → ([a]@ρ1, [a]@ρ2)@ρself , which is different from the external type because
we allow polymorphic recursion on region types. More information about Safe
and its type system can be found at [16].

The Safe front-end desugars Full-Safe and produces a bare-bones functional
language called Core-Safe. The transformation starts with region inference and
follows with Hindley-Milner type inference, desugaring pattern matching into
case expressions, where clauses into let expressions, collapsing several function-
defining equations into a single one, and some other transformations.

In Fig. 1 we show Core-Safe’s syntax, which is defined in Isabelle/HOL as a
collection of datatypes. A program prog is a sequence of possibly recursive poly-
morphic data and function definitions followed by a main expression e whose
value is the program result. The abbreviation xi

n stands for x1 · · ·xn. Destruc-
tive pattern matching is desugared into case! expressions. Constructor applica-
tions are only allowed in let bindings. Only atoms are used in applications, and
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only variables are used in case/case! discriminants, copy and reuse expressions.
Region arguments are explicit in constructor and function applications and in
the copy expression. Function definitions have additional region arguments rj

l

where the function is allowed to build data structures. In the function’s body
only the rj and its working region self may be used.

2.2 Core-Safe Semantics

In Figure 2 we show the resource-aware big-step semantics of Core-Safe ex-
pressions. A judgement of the form E � h, k, td , e ⇓ h′, k, v, r means that the
expression e is successfully reduced to normal form v under runtime environment
E and heap h with k + 1 regions, ranging from 0 to k, and that a final heap h′
with k + 1 regions is produced as a side effect. Arguments k can be considered
as attributes of their respective heaps. We highlight them in order to emphasise
that the evaluation starts and ends with the same number of regions, and also to
show when regions are allocated and deallocated. A value v is either a constant
or a heap pointer. The argument td and the result r have to do with resource
consumption and will be explained later. The semantics can be understood dis-
regarding them. Moreover, forgetting about resource consumption produces a
valid value semantics for the language.

A runtime environment E maps program variables to values and region vari-
ables to actual region identifiers which consist of natural numbers. As region
allocation/deallocation are done at function invocation/return time, the live re-
gions are organised in a region stack. A region identifier is just its offset from
the bottom of this stack. We adopt the convention that for all E, if c is a con-

E � h, k, td , c ⇓ h, k, c, ([ ]k, 0, 1) [Lit ]
E[x �→ v] � h, k, td , x ⇓ h, k, v, ([ ]k, 0, 1) [Var ]

j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)

E[x �→ p, r �→ j] � h, k, td , x@r ⇓ h′, k, p′, ([j �→ m], m, 2)
[Var2 ]

fresh(q)
E[x �→ p] � h 	 [p �→ w], k, td , x! ⇓ h 	 [q �→ w], k, q, ([ ]k, 0, 1)

[Var3 ]

c = c1 ⊕ c2

E[a1 �→ c1, a2 �→ c2] � h, k, td , a1 ⊕ a2 ⇓ h, k, c, ([ ]k, 0, 2)
[Primop]

(f xi
n @ rj

l = e) ∈ Σ

[xi �→ E(ai)
n
, rj �→ E(r′j)

l
, self �→ k + 1] � h, k + 1, n + l, e ⇓ h′, k + 1, v, (δ, m, s)

E � h, k, td , f ai
n @ r′j

l ⇓ h′|k, k, v, (δ|k, m, max{n + l, s + n + l − td})
[App]

E � h, k, 0, e1 ⇓ h′, k, v1, (δ1, m1, s1)
E ∪ [x1 �→ v1] � h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2, m2, s2)

E � h, k, td , let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2, max{m1, |δ1| + m2}, max{2 + s1, 1 + s2})
[Let1 ]

j ≤ k fresh(p) E ∪ [x1 �→ p] � h 	 [p �→ (j, C vi
n)], k, td + 1, e2 ⇓ h′, k, v, (δ, m, s)

E[ai �→ vi
n, r �→ j] � h, k, td , let x1 = C ai

n@r in e2 ⇓ h′, k, v, (δ + [j �→ 1], m + 1, s + 1)
[Let2 ]

E[x �→ p] h[p �→ (j, Cr vi
n)] E ∪ [xri �→ vi

nr ] � h, k, td + nr, er ⇓ h′, k, v, (δ, m, s)

E � h, k, td , case x of Ci xij
ni → ei

n ⇓ h′, k, v, (δ, m, s + nr)
[Case]

E[x �→ p] h+ = h 	 [p �→ (j, Cr vi
n)] E ∪ [xri �→ vi

nr ] � h, k, td + nr, er ⇓ h′, k, v, (δ, m, s)

E � h+, k, td , case! x of Ci xij
ni → ei

n ⇓ h′, k, v, (δ + [j �→ −1], max{0, m − 1}, s + nr)
[Case!]

Fig. 2. Resource-Aware Big-Step Operational Semantics of Core-Safe expressions
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stant, then E(c) = c. A heap h is a finite mapping from fresh variables p to
constructor cells w of the form (j, C vi

n), meaning that the cell resides in region
j. By h[p �→ w] we denote a heap h where the binding [p �→ w] is highlighted,
while h� [p �→ w] denotes the disjoint union of heap h with the binding [p �→ w].
By h |k we denote the heap obtained by deleting from h those bindings living in
regions greater than k, and by dom(h), the set {p | [p �→ w] ∈ h}.

The semantics of a program is the semantics of the main expression in an
environment Σ, which is the set containing all the function and data declarations.
Rules Lit and Var1 just say that basic values and heap pointers are normal forms.
Rule Var2 executes a runtime system copy function copying the recursive part
of the data structure pointed to by p, and living in a region j′, into a (possibly
different) region j. In rule Var3, the binding [p �→ w] in the heap is deleted and
a fresh binding [q �→ w] to cell w is added. This action may create dangling
pointers in the live heap, as some cells may contain free occurrences of p. Rule
App shows when a new region is allocated. Notice that the body of the function
is executed in a heap with k + 2 regions. The formal identifier self is bound to
the newly created region k +1 so that the function body may create cells in this
region or pass this region as an argument to other functions. Before returning
from the function, all cells created in region k + 1 are deleted. Rules Let1, Let2,
and Case are the usual ones for an eager language, while rule Case! expresses
what happens in a destructive pattern matching: the binding of the discriminant
variable disappears from the heap.

This semantics is defined in Isabelle/HOL as an inductive relation. The en-
vironment E is split into a pair (E1, E2) separating program variables from
region arguments bindings. These and the heap are modelled as partial func-
tions. Even though all functions are total in Isabelle/HOL, a partial function,
denoted ′a ⇀ ′b, can be easily defined as the total function ′a ⇒ ′b option ,
where f x = None represents that f is not defined at x.

2.3 Resource Consumption

The semantics relates the evaluation of an expression e to a resource vector
r = (δ, m, s) obtained as a side effect. The first component is a partial function
δ : N → Z giving for each region k in scope the signed difference between the
cells in the final and initial heaps. A positive difference means that new cells
have been created in this region. A negative one means that some cells have
been destroyed. By dom(δ) we denote the subset of N in which δ is defined.
By |δ| we mean the sum

∑
n∈dom(δ) δ(n) giving the total balance of cells. The

remaining components m and s respectively give the minimum number of fresh
cells in the heap and of words in the stack needed to successfully evaluate e.
When e is the main expression, these figures give us the total memory needs of
the Safe program. The additional argument td is the number of bindings in E
which can be discarded when a normal form is reached or at function invocation.
It coincides with the value returned by the function topDepth of Sec. 3. As we will
see there, the runtime environment E is kept in the evaluation stack and (part
of) this environment is discarded by the abstract machine in those situations.
By [ ]k we denote the function λn.0 if 0 ≤ n ≤ k, and λn.⊥ otherwise. By δ1 + δ2
we denote the function:

(δ1 + δ2)(x) =

⎧
⎨

⎩

δ1(x) + δ2(x) if x ∈ dom(δ1) ∩ dom(δ2)
δi(x) if x ∈ dom(δi) − dom(δ3−i), i ∈ {1, 2}
⊥ otherwise
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Function size in rule Var2 gives the size of the recursive spine of a data
structure:

size(h[p �→ (j, C vi
n)], p) = 1 +

∑

i∈RecPos(C )

size(h, vi)

where RecPos returns the recursive argument positions of a given construc-
tor. In rule App, by δ|k we mean a function like δ but undefined for values
greater than k. The computation of these resource consumption figures takes
into account how the translation will transform, and the abstract machine will
execute, the corresponding expression. For instance, in rule App the number
max{n + l, s + n + l − td} of fresh stack words takes into account that the first
n + l words are needed to store the actual arguments in the stack, then the
current environment of length td is discarded, and then the function body is
evaluated. In rule Let1, a continuation (2 words, see Sec. 2.4) is stacked before
evaluating e1, and this evaluation leaves a value in the stack before evaluating
e2. Hence, the computation max{2 + s1, 1 + s2}.

2.4 Safe-Imp Syntax and Semantics

Safe-Imp is the bytecode language of the SVM. Its syntax and semantics is de-
picted in Figure 3. A configuration of the SVM consists of the five components
(is , (h, k), k0, S, cs), where is is the current instruction sequence, (h, k) is the cur-
rent heap, k being its topmost region, S is a stack and cs is the code store where
the instruction sequences resulting from the compilation of program fragments
are kept. A code store is a partial function from code labels, denoted p, q, . . .,
to bytecode lists. The component k0 is a low watermark in the heap registering
which one must be the topmost region when a normal form is reached (see the
semantics of the DECREGION instruction). The property k0 ≤ k is an invari-
ant of the execution. By b, bi, . . . we denote heap pointers or any other item
stored in the stack. The stack contains three kinds of objects: values, regions
and continuations.

so → v | j | (k, p) {stack object}
S → so list {stack}

The semantics of the Safe-Imp instructions is shown in terms of configuration
transitions. By Cm

r we denote the data constructor which is the r-th in its data
definition out of a total of m data constructors, and by S!j, the j-th element of
the stack S counting from the top and starting at 0. A more complete view on
how this machine has been derived from the semantics can be found at [14]. For
the purpose of this paper, a short summary of the instructions follows.

Instruction DECREGION deletes from the heap all the regions, if any, be-
tween the current topmost region k and region k0, excluding the latter. Each
region can be deallocated with a time cost in O(1) due to its implementation as
a linked list (see [21] for details). Instruction POPCONT pops a continuation
from the stack or stops the execution if there is none. Instruction PUSHCONT
pushes a continuation. It will be used in the translation of a let.

Instructions COPY and REUSE just mimic the semantics given to the cor-
responding expressions. Instruction CALL jumps to a new instruction sequence
and creates a new region. Function calls are always tail recursive, so there is no
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Initial configuration ⇒ Final configuration Condition

(DECREGION : is, (h, k), k0, S, cs) k ≥ k0
⇒ (is, (h |k0 , k0), k0, S, cs)

([POPCONT ], (h, k), k, b : (k0, p) : S, cs[p �→ is])
⇒ (is, (h, k), k0, b : S, cs)

(PUSHCONT p : is, (h, k), k0, S, cs[p �→ is ′])
⇒ (is, (h, k), k, (k0, p) : S, cs)

(COPY : is, (h[b �→ (l, C vi
n)], k), k0, b : j : S, cs) (h′, b′) = copy(h, b, j)

⇒ (is, (h′, k), k0, b′ : S, cs) j ≤ k

(REUSE : is, (h 	 [b �→ w], k), k0, b : S, cs) fresh(b′, h 	 [b �→ w])
⇒ (is, (h 	 [b′ �→ w], k), k0, b′ : S, cs)

([CALL p], (h, k), k0, S, cs[p �→ is])
⇒ (is, (h, k + 1), k0, S, cs)

(PRIMOP ⊕ : is, (h, k), k0, c1 : c2 : S, cs) c = c1 ⊕ c2
⇒ (is, (h, k), k0, c : S, cs)

([MATCH l pj
m], (h[S!l �→ (j, Cm

r vi
n)], k), k0, S, cs[pj �→ isj

m])
⇒ (isr, (h, k), k0, vi

n : S, cs)
([MATCH ! l pj

m], (h 	 [S!l �→ (j, Cm
r vi

n)], k), k0, S, cs[pj �→ isj
m])

⇒ (isr, (h, k), k0, vi
n : S, cs)

(BUILDENV Ki
n

: is, (h, k), k0, S, cs)
⇒ (is, (h, k), k0, Itemk(Ki)

n
: S, cs) (1)

(BUILDCLS Cm
r Ki

n
K : is, (h, k), k0, S, cs) Itemk(K) ≤ k, fresh(b, h)

⇒ (is, (h 	 [b �→ (Itemk(K), Cm
r Itemk(Ki)

n
)], k), k0, b : S, cs) (1)

(SLIDE m n : is, (h, k), k0, bi
m

: b′i
n

: S, cs)
⇒ (is, (h, k), k0, bi

m
: S, cs)

(1) Itemk(K) def=

8<
:

S!j if K = j ∈ N

c if K = c
k if K = self

Fig. 3. The Safe Virtual Machine (SVM)

need for a return instruction. Instruction MATCH does a jump depending on
the constructor of the matched cell. The list of code labels pj

m corresponds to
the compilation of a set of case alternatives. Instruction MATCH ! additionally
destroys the matched cell. The following invariant is ensured by the translation:
For every instruction sequence in the code store cs , instruction i is the last one
if and only if it belongs to the set {POPCONT , CALL, MATCH , MATCH !}.

Instruction BUILDENV creates a portion of the environment on top of the
stack: If a key K is a natural number j, the item S!j is copied and pushed
on the stack; if it is a basic constant c, it is directly pushed on the stack; if it
is the identifier self , then the topmost region number k is pushed. Instruction
BUILDCLS allocates a fresh cell and fills it with a constructor application. It
uses the same conventions as BUILDENV . Finally, instruction SLIDE removes
some parts of the stack and it is used to remove environment fragments.

We have defined this semantics in Isabelle/HOL as the function:
execSVM :: SafeImpProg ⇒ SVMState ⇒ (SVMState ,SVMState) Either

where Either is a sum type and SVMState denotes a configuration ((h, k),
k0, pc, S) with the code store removed and the current instruction sequence
replaced by a program counter pc = (p, i). The code store cs is a read-only
component and has been included in the type SafeImpProg. The current instruc-
tion can be retrieved by accessing the i-th element of the sequence (cs p). If the
result of execSVM P s1 is Left s1 , this means that s1 is a final state. Otherwise,
it returns Right s2.
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3 The Translation

The translation splits the runtime environment (E1, E2) of the semantics into
two: a compile-time one ρ mapping program variables to stack offsets, and the
actual runtime environment contained in the stack. As this grows dynamically,
numbers are assigned to the variables from the bottom of the environment.
In this way, if the environment occupies the top m positions of the stack and
ρ[x �→ 1], then S!(m − 1) will contain the runtime value of x.

An expression let x1 = e1 in e2 will be translated by pushing to the stack
a continuation for e2, and then executing the translation of e1. A continuation
consists of a pair (k0, p) where p points to the translation of e2 and k0 is the
lower watermark associated to e2. It is saved in the stack because the lower
watermark of e1 is different (see the semantics of PUSHCONT). As e1 and e2
share most of their runtime environments, the continuation is treated as a barrier
below which the environment must not be deleted while e2 has not reached its
normal form. So, the whole compile-time environment ρ consists of a list of
smaller environments [δ1, . . . , δn], mimicking the stack layout. Each individual
block i consists of a triple (δi, li, ni) with an environment δi mapping variables
to numbers in the range (1 . . .mi), a block length li = mi + ni, and an indicator
ni = 2 for all the blocks except for the first one, whose value is n1 = 0. We
are assuming that a continuation needs two words in the stack and that the
remaining items need one word.

The offset with respect to the top of the stack of a variable x defined in the
block k, denoted ρ x, is computed as follows: ρ x

def= (
∑k

i=1 li) − δk x. Only the
top environment may be extended with new bindings. There are three operations
on compile-time environments:

1. ((δ, m, 0) : ρ) + {xi �→ ji
n} def= (δ ∪ {xi �→ m + ji

n
, m + n, 0) : ρ.

2. ((δ, m, 0) : ρ)++ def= ({}, 0, 0) : (δ, m + 2, 2) : ρ.
3. topDepth ((δ, m, 0) : ρ) def= m. Undefined otherwise.

The first one extends the top environment with n new bindings, while the second
closes the top environment with a 2-indicator and then opens a new one.

Using these conventions, in Figure 4 we show an idealised version of the trans-
lation function trE taking a Core-Safe expression and a compile-time environ-
ment, and giving as a result a list of SVM instructions and a code store. There,
NormalForm ρ is the following list:

NormalForm ρ
def= [SLIDE 1 (topDepth ρ),DECREGION ,POPCONT ]

The whole program translation is done by Isabelle/HOL function trProg which
first translates each function definition by using function trF , and then the main
expression by using trE . The source file is guaranteed to define a function be-
fore its use. The translation accumulates an environment funm mapping every
function name to the initial bytecode sequence of its definition. The main part
of trProg is:

trProg (datas , defs , e) = (
let . . .

((p, funm, contm), codes) = mapAccumL trF (1, empty , [ ]) defs ;
cs = concat codes

in . . . cs . . .)
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trE c ρ = (BUILDENV [c] : NormalForm ρ, {})
trE x ρ = (BUILDENV [ρ x] : NormalForm ρ, {})
trE (x@r) ρ = (BUILDENV [ρ x, ρ r] : COPY : NormalForm ρ, {})
trE (x!) ρ = (BUILDENV [ρ x] : REUSE : NormalForm ρ, {})
trE (a1 ⊕ a2) ρ = (BUILDENV [ρ a1, ρ a2] : PRIMOP : NormalForm ρ, {})
trE (f ai

n @ sj
m) ρ = ([BUILDENV [ρ ai

n, ρ sj
m],SLIDE (n + m) (topDepth ρ),CALL p], cs ′)

where (f xi
n @ rj

m = e) ∈ defs
cs ′ = {p �→ is} ∪ cs
(is, cs) = trE e [({ rj �→ m − j + 1m

, xi �→ n − i + m + 1n}, n + m, 0)]

trE (let x1 = Cm
l ai

n@s in e) ρ = (BUILDCLS Cm
l [(ρ ai)

n
] (ρ s) : is, cs)

where (is, cs) = trE e (ρ + {x1 �→ 1})
trE (let x1 = e1 in e2) ρ = (PUSHCONT p : is1, cs1 ∪ cs2 ∪ {p �→ is2})

where (is1, cs1) = trE e1 ρ++

(is2, cs2) = trE e2 (ρ + {x1 �→ 1})
trE (case x of alt i

n
) ρ = ([MATCH (ρ x) pi

n], {pi �→ isi
n} ∪ (

Sn
i=1 csi))

where (isi, csi) = trA alt i ρ, 1 ≤ i ≤ n

trE (case! x of alt i
n
) ρ = ([MATCH ! (ρ x) pi

n], {pi �→ isi
n} ∪ (

Sn
i=1 csi))

where (isi, csi) = trA alt i ρ, 1 ≤ i ≤ n

trA (C xi
n → e) ρ = trE e (ρ + {xi �→ n − i + 1n})

Fig. 4. Translation from Core-Safe expressions to Safe-Imp bytecode instructions

P1 �→ [BUILDCLS Nil20 [ ] self , BUILDENV [0, 0, self ], SLIDE 3 1, CALL P2]
P2 �→ [MATCH ! 0 [P3, P4]]
P3 �→ [BUILDENV [1], SLIDE 1 3, DECREGION , POPCONT ]
P4 �→ [PUSHCONT P5,BUILDENV [3, 5, 6],SLIDE 3 0,CALL P2]
P5 �→ [BUILDCLS Cons2

1 [1, 0] 5,BUILDENV [0],SLIDE 1 6,DECREGION ,POPCONT ]

Fig. 5. Imperative code for the Core-Safe appendD program

where cs is the code store resulting from the compilation, and mapAccumL is
a higher-order function, combining map and foldl, defined to Isabelle/HOL by
copying its definition from the Haskell library (http://dalila.sip.ucm.es/safe/
theories for more details).

In Figure 5 we show the code store generated for the following Core-Safe
program with the appendD function of Sec. 2.1:

appendD xs ys @ r = case! xs of
[ ] → ys
x : xx → let yy = appendD xx ys @ r in

let zz = x : yy @ r in zz ;
let l = [ ] @ self in append l l @ self

4 Formal Verification

The above infrastructure allows us to state and prove the main theorem express-
ing that the pair translation-abstract machine is sound and complete with respect
to the resource-aware semantics. First, we make note that both the semantics
and the SVM machine rules are syntax driven, and that their computations are
deterministic (up to fresh names generation for the heap). So, we only need to
prove that everything done by the semantics can be emulated by the machine,
and that termination of the machine implies termination of the semantics (for
the corresponding expression.)
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First we define in Isabelle/HOL the following equivalence relation between
runtime environments in the semantics and in the machine:

Definition 1. We say that the environment E = (E1, E2) and the pair (ρ, S)
are equivalent, denoted (E1, E2) � (ρ, S), if dom E − {self } = dom ρ, and
∀x ∈ dom E1 . E1(x) = S!(ρ x), and ∀r ∈ dom E2 − {self } . E2(r) = S!(ρ r).

Then we define an inductive relation expressing the evolution of the SVM ma-
chine up to some intermediate points corresponding to the end of the evaluation
of sub-expressions:

inductive
execSVMBalanced :: [SafeImpProg,SVMState,nat list,SVMState list,nat list] ⇒ bool

( � , -svm→ , )
where

init: P � s, n#ns -svm→ [s], n#ns
| step: [[ P � s, n#ns -svm→ s’#ss, m#ms;

execSVM P s’ = Right s’’;
m’ = nat (diffStack s’’ s’ m);
m’ ≥ 0;
ms’ = (if pushcont (instrSVM P s’) then 0#m#ms

else if popcont (instrSVM P s’) ∧ ms=m’’#ms’’ then (Suc m’’)#ms’’
else m’#ms)]] =⇒

P � s, n#ns -svm→ s’’#s’#ss, ms’

P � s, n#ns −svm → ss, 1#ns represents a ‘balanced’ execution of the SVM
corresponding to the evaluation of a source expression. Its meaning is that the
Safe-Imp program P evolves by starting at state s and passing through all the
states in the list ss (s is the last state of the list ss, and the sequence pro-
gresses towards the head of the list), with the stack decreasing at most by n
positions. Should the top instruction of the current state create a smaller stack,
then the machine stops at that state. The symbol # in Isabelle/HOL is the cons
constructor for lists.

Next, we define what resource consumption means at the machine level. Given
a forwards state sequence ss = s0 · · · sr starting at s0 with heap h0 and stack
S0, maxFreshCells ss gives the highest non-negative difference in cells between
the heaps in ss and the heap h0. Likewise, maxFreshWords ss gives the maximum
number of fresh words created in the stack during the sequence ss with respect
to S0. Finally, diff k h h′ gives for each region j, 0 ≤ j ≤ k, the signed difference
in cells between h′ and h.

From the input list ds of Core-Safe definitions, we define the set definedFuns ds
of the function names defined there. Also, given an expression e, closureCalled e ds
is an inductive set giving the names of the functions reached from e by direct
or indirect invocation. By cs � cs ′ we mean that the code store cs ′ extends the
code store cs with new bindings.

Finally, we show the correctness lemma of the semantics with respect to the
machine, as it has been stated and proved in Isabelle/HOL:
lemma correctness:

E h , k , td , e ⇓ h’ , k , v , r −→
(closureCalled e defs ⊆ definedFuns defs
∧ ((p, funm, contm), codes) = mapAccumL trF (1, empty, []) defs
∧ cs = concat codes
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∧ P = ((cs, contm),p,ct,st)
∧ finite (dom h)
−→ (∀ rho S S’ k0 s0 p’ q ls is is’ cs1 j.

(q, ls, is, cs1) = trE p’ funm fname rho e
∧ (append cs1 [(q,is’,fname)]) � cs
∧ drop j is’ = is
∧ E � (rho,S)
∧ td = topDepth rho
∧ k0 ≤ k
∧ S’ = drop td S
∧ s0 = ((h, k), k0, (q, j), S)
−→ (∃ s ss q’ i δ m w.

P�s0 , td#tds -svm→ s # ss , 1#tds
∧ s = ((h’, k) ↓ k0, k0, (q’, i), Val v # S’)
∧ fst (the (map of cs q’))!i = POPCONT
∧ r = ( δ,m,w)
∧ δ = diff k (h,k) (h’,k)
∧ m = maxFreshCells (rev (s#ss))
∧ w = maxFreshWords (rev (s#ss)))))

The premises state that the arbitrary expression e is evaluated to a value
v according to the Core-Safe semantics, that it is translated in the context of
a closed Core-Safe program defs having a definition for every function reached
from e, and that the instruction sequence is and the partial code store cs1 are
the result of the translation. Then, the execution of this sequence by the SVM
starting at an appropriate state s0 in the context of the translated program P ,
will reach a stopping state s having the same heap (h′, k) as the one obtained in
the semantics, and the same value v on top of the stack. Moreover, the memory
(δ, m, w) consumed by the machine, both in the heap and in the stack, is as
predicted by the semantics.

The proof is done by induction on the ⇓ relation, and with the help of a
number of auxiliary lemmas, some of them stating properties of the translation
and some others stating properties of the evaluation. We classify them into the
following groups:

Lemmas on the evolution of the SVM. This group takes care of the first three
conclusions, i.e. P�s0 , td#tds -svm→ s # ss , 1#tds and the next two ones, and
there is one or more lemmas for every syntactic form of e.

Lemmas on the equivalence of runtime environments. They are devoted to prov-
ing that the relation (E1, E2) � (ρ, S) is preserved across evaluation. For in-
stance, if e ≡ f ai

n @ r′j
l
, being f defined by the equation f xi

n @ rj
l = ef , we

prove that the equivalence of the environments local to f still hold. Formally:

(E1, E2) � (ρ, S)
∧ ρ′ = [({xi �→ n − i + l + 1

n
, rj �→ l − j + 1

l
, }, n + l, 0)]

∧ (E′
1, E

′
2) = ([xi �→ E(ai)

n
], [rj �→ E(r′j)

l
, self �→ k + 1])

∧ S′ = S!(ρ ai)
n

@ S!(ρ r′j)
l
@ drop td S

=⇒ (E′
1, E

′
2) � (ρ′, S′)

Lemmas on cells charged to the heap. This group takes care of the last but
two conclusion δ = diff k (h,k) (h’,k), and there is one or more lemmas for every
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syntactic form of e. For instance, if e ≡ let x1 = e1 in e2, then the main lemma
has essentially this form:

δ1 = diff k (h, k) (h′ |k, k)
∧ δ2 = diff k (h′ |k, k) (h′′, k)
=⇒ δ1 + δ2 = diff k (h, k) (h′′, k)

where (h, k), (h′ |k, k), and (h′′, k) are respectively the initial heap, and the heaps
after the evaluation of e1 and e2.

Lemmas on fresh cells needed in the heap. This group takes care of the last but
one conclusion m = maxFreshCells (rev (s#ss)). If e ≡ let x1 = e1 in e2, then the
main lemma has essentially this form:

δ1 = diff k (h, k) (h′ |k, k)
∧ m1 = maxFreshCells (rev (s1#ss1))
∧ m2 = maxFreshCells (rev (s2#ss2))
=⇒ max m1 (m2+ |δ1 |) = maxFreshCells (rev (s2#ss2 @ s1#ss1 @ [s0]))

where s0, s1, and s2 are respectively the initial state of the SVM, and the states
after the evaluation of e1 and e2.

Lemmas on fresh words needed in the stack. This group takes care of the last
conclusion w = maxFreshWords (rev (s#ss)). If e ≡ f ai

n @ r′j
l
, then the main

lemma has essentially this form:

w = maxFreshWords (rev (s#ss))
=⇒ max (n + l) (w + n + l − td) = maxFreshWords (rev (s#ss @ [s2, s1, s0]))

where s0, s1, s2 are respectively the initial state of the application, and the states
after the execution of BUILDENV and SLIDE , and s#ss is the state sequence
of the body of f .

That termination of the SVM implies the existence of a derivation in the
semantics for the corresponding expression has not been proved for the moment.

5 Discussion

On the use of Isabelle/HOL. The complete specification in Isabelle/HOL of
the syntax and semantics of our languages, of the translation functions, the
theorems and the proofs, represent almost one person-year of effort. Including
comments, about 7000 lines of Isabelle/HOL scripts have been written, and
about 200 lemmas proved.

Isabelle/HOL gives enough facilities for defining recursive and higher-order
functions. These are written in much the same way as a programmer would do
in ML or Haskell. We have not found special restrictions in this respect. The
only ‘difficulty’ is that it is not possible to write potentially non-terminating
functions. One must provide a termination proof when Isabelle/HOL cannot find
one. Providing such a proof is not always easy because the argument depends
on some other properties such as ‘there are no cycles in the heap’, which are not
so easy to prove. Fortunately in these cases we have expressed the same ideas
using inductive relations.

Isabelle/HOL also provides inductive n-relations, transitive closures as well as
ordinary first-order logic. This has made it easy to express our properties with
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almost the same concepts one would use in hand-written proofs. Partial functions
have also been very useful in modelling programming language structures such
as environments, heaps, and the like. Being able to quantify these objects in
Higher-Order Logic has been essential for stating and proving the theorems.

Assessing how ‘easy’ it has been to conduct the proofs is another question. Part
of the difficulties were related to our lack of experience in using Isabelle/HOL.
The learning process was rather slow at the beginning. A second inconvenience
is that proof assistants (as it must be) do not take anything for granted. Trivial
facts that nobody cares to formalise in a hand-written proof, must be painfully
stated and proved before they can be used. We have sparingly used the auto-
matic proving commands such as simp all, auto, etc., in part because they do
‘too many’ things, and frequently one does not recognise a lemma after using
them. Also, we wanted the proof and to relate the proof to our hand-written
version. As a consequence, it is very possible that our scripts are longer than
needed. Finally, having programs and predicates ‘living’ together in a theorem
has been an experience not always easy to deal with.
On the quality of the extracted code. The Haskell code extracted from the Is-
abelle/HOL definitions reaches 700 lines, and has undergone some changes before
becoming operative in the compiler. One of these changes has been a trivial co-
ercion between the Isabelle/HOL types nat and int and the Haskell type Int.
The most important one has been the replacement of the Isabelle/HOL type
⇀ representing a partial function, heavily used for specifying our compile-time
environments, by a highly trusty table type of the Haskell library. The code gen-
erated for ⇀ was just a λ-abstraction needing linear time in order to find the
value associated to a key. This would lead to a quadratic compile time. Our table
is implemented as a balanced tree and has also been used in other phases of the
compiler. With this, the efficiency of the code generation phase is in O(n log n)
for a single Core-Safe function of size n, and about linear with the number of
functions of the input.

6 Related Work

Using some form of formal verification to ensure the correctness of compilers has
been a hot topic for many years. An annotated bibliography covering up to 2003
can be found at [6]. Most of the papers reflected there propose techniques whose
validity is established by formal proofs made and read by humans.

Using machine-assisted proofs for compilers starts around the seventies, with
an intensificaton at the end of the nineties. For instance, [19] uses a constraint
solver to asses the validity of the GNU C compiler translations. They do not try
to prove the compiler correct but instead to validate its output by comparing
it with the corresponding input. This technique was originally proposed in [23].
A more recent experiment in compiler validation is [12]. In this case the source
is the term language of HOL and the target is assembly language of the ARM
processor. The compiler generates for each source, the object file and a proof
showing that the semantics of the source is preserved. The last two stages of the
compilation are in fact formally verified, while validation of the output is used
in the previous phases.

More closely related to our work are [1] which certifies the translation of a Lisp
subset to a stack language by using PVS, and [25] which uses Isabelle/HOL to
formalise the translation from a small subset of Java (called μ-Java) to a stripped
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version of the Java Virtual Machine (17 bytecode instructions). Both specify the
translation functions, and prove correctness theorems similar to ours. The latter
work can be considered as a first attempt on Java, and it was considerably
extended by Klein, Nipkow, Berghofer, and Strecker himself in [8,9,3]. Only [3]
claims that the extraction facilities of Isabelle/HOL have been used to produce
an actually running Java compiler. The main emphasis is on formalisation of
Java and JVM features and on creating an infrastructure on which other authors
could verify properties of Java or Java bytecode programs.

A realistic C compiler for programming embedded systems has been built and
verified in [5,10,11]. The source is a small C subset called Cminor to which C is
informally translated, and the target is Power PC assembly language. The com-
piler runs through six intermediate languages for which the semantics are defined
and the translation pass verified. The authors use the Coq proof-assistant and
its extraction facilities to produce Caml code. They provide figures witnessing
that the compile times obtained are competitive whith those of gcc running with
level-2 optimisations activated. This is perhaps the biggest project on machine-
assisted compiler verification done up to now.

Less related work are [7] and the MRG project [24], where certificates in Is-
abelle/HOL about heap consumption, based on special types inferred by the com-
piler, are produced. Two EU projects, EmBounded (http://www.embounded.org)
and Mobius (http://mobius.inria.fr) have continued this work on certification
and proof carrying code, the first one for the functional language Hume, and the
second one for Java and the JVM.

As we have said in Sec. 1, the motivation for verifying the Safe back-end arises
in a different context. We have approached this development because we found
it shorter than translating the Core-Safe properties to certificates at the level
of the JVM. Also, we expected the size of our certificates to be considerably
smaller than the ones obtained with the other approach. We have improved on
previous work by complementing functional correctness with a proof of resource
consumption preservation.
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