
Teaching monadic algorithms to first-year students∗

Ricardo Peña Yolanda Ortega
Fernando Rubio

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, 28040 Madrid, Spain.

e-mails: {ricardo, yolanda}@sip.ucm.es, rubiod@eucmax.sim.ucm.es

Abstract

The main claim of this paper is that imperative concepts such as sequencing, repetition, mutable state, and
I/O can be taught to first-year students by using the monadic facilities of a functional language such as
Haskell.

We report on an experience of teaching algorithms involving arrays, and which are typical of a first pro-
gramming course —such as insertion sort, bubble sort, linear search, and so on—, by using the monadic
style. It appears that our students do not have special difficulties in grasping both the imperative con-
cepts and the algorithms. They learn these algorithms after a previous exposition to classical functional
programming.

In the paper, we provide a rich sample of the algorithms used in the course. We also claim that higher
order constructions facilitate to our students the design of complex monadic algorithms.

Keywords: imperative functional programming, monadic algorithms, education.

1 Introduction
Since the end of the 80’s, there has been a broad trend to abandon imperative languages on behalf of functional
ones in introductory programming courses. So, at many universities, Pascal has been replaced by Scheme,
ML —and its variants—, or Miranda, or, more recently, Gofer and Haskell, as the first programming language
to be learnt by undergraduates. This kind of experiences have been already reported in a number of papers
(see, for instance, [7, 9, 8]). Therefore, there is no need to repeat here the benefits of the functional paradigm
for ‘unexperienced’ students.

Being the weak-point of functional programming languages execution efficiency, most of the recent re-
search on the functional field has been devoted to increase the efficiency of functional programs. One of the
most interesting results is monadic programming [15, 17]. A monadic style enables the programmer to cope
with interaction and state-based computations in a functional setting. Also, higher-order structures can be
defined, which mimic the control structures of imperative languages, and giving rise to the term imperative
functional programming [6, 10]. However, due to the relationship between monads and category theory, and
the proximity of the monadic style to the tempting realm of imperative programming, these advances have
been mostly relegated to postgraduate courses.

We claim that it is completely viable to teach monadic algorithms to freshmen. Moreover, this can —and
should— be done without explaining the technical details of monads. The benefits of accepting this challenge,

∗Work partially supported by the spanish projects CAM-06T/033/96 and CICYT-TIC97-0672. Presented at WAAAPL’99 in Princi-
ples, Logics and Implementations of high level Prog. Lang. PLI’99

33

are two-fold: on the one hand, students are able to tackle a wider spectrum of programming applications; on
the other hand, they learn imperative concepts without leaving the functional world.

The aim of the present paper is to substantiate our claim by explaining how to gently introduce the
monadic style of programming to first-year students, and by providing some simple, yet illustrative, examples
for this teaching task. We start with a brief presentation of the context where our proposal has sprouted. Then,
we explain and detail a bit the proposal. Section 4 is the core of the paper, containing the teaching sequence
we have followed and the corresponding monadic algorithms. We end by commenting some results from our
experience.

2 The context
Before presenting our proposal, it is important to clearly explain the context and circumstances of our course.
Attempts to give introductory programming courses based on functional programming languages have been
sometimes forsaken for fear of a not completely satisfactory integration with the rest of the curriculum. Func-
tional programming turns out to be so natural and close to problem-thinking, that students find difficulties
to handle languages like FORTRAN or C when they are confronted to this low-level programming style in
successor courses.

It is a reality that computer science curricula are mostly imperative programming oriented, with most
subjects based on this style, while other programming paradigms are included as complementary or optional
courses. For instance, while there is a great variety of first courses on programming from the functional
perspective, there are very few proposals for a second course on programming (advanced data structures and
program design methods) in a functional style (see [13] for a proposal).

Nonetheless, our proposal is not addressed to future computer engineers, but to first-year undergraduate
mathematic students, which must follow a compulsory course on programming and, probably, will never
learn anymore on computers or programming. Although, in our case, there is a second programming course
on data structures and algorithms, this is only an option among a great and diversified offer on pure and
applied mathematics subjects. Therefore, the main goal of this introductory course to programming is not to
prepare students for later courses on the computing discipline, but to teach them how to use such a powerful
and nowadays indispensable tool: a programming language. Of course, it is not our goal to teach a particular
language and system, but to make the students to understand the main concepts in programming so that they
will be able to design algorithms to solve their problems, and to express them in the available programming
language —imperative in most cases. While the functional style is excellent for algorithm design, even more
for mathematicians, the training would be incomplete without an understanding of the imperative computing
model, and of the most typical data structures of the imperative style, i.e. arrays and files, which will be
extensively used in subjects like numerical analysis or statistics.

A first attempt we tried to follow —inspired by the approach of [5]— was to present functional languages
as a specification tool for describing algorithms, which could be directly executed, or which could be later
efficiently implemented in an imperative language. Actually, Hartel and Muller, describe how to learn C after
a first course on SML. A related experience is presented in [3], where Miranda is used for ADTs specifications
to be implemented in C. In [7] a first-year course combining functional and imperative programming is
described. Our project was not so ambitious, because we were constrained to a one-year course. Thus,
75% of the course was devoted to pure functional programming, while the remaining 25% was employed
to explain, by using a conventional imperative language, the main imperative concepts (updatable variables,
sequencing, iteration, arrays, files, subprograms). However, this first experience was quite a failure. The
main reason was the scarce integration between the two programming styles. The methodology ‘functional
specification – imperative implementation’ only worked for simple examples because many of the functional
constructions, like non-tail recursion or higher-order functions, were difficult to translate in a systematic way

34

to the imperative style. We concluded that it was easier to design the algorithms directly using the imperative
features. Consequently, the students ‘divided’ our course into two independent subjects: Haskell and Pascal,
which were the languages chosen to be used in laboratories. This desintegration was aggravated by the lack
of time: 60 classroom hours plus 30 hours in labs appeared to be too scanty to make them understand the
two paradigms. Thus, while students were still fighting against higher-order functions, we suddenly started
to talk about states and iterations. It is not the case that these concepts are difficult to grasp, but the students
were unable to express them in the new syntax, and the confusion between the two notations was great.

3 The proposal
As we have explained in the previous section, the failure of our first experience was caused by the desintegra-
tion between the two programming styles, increased by the use of two different syntaxes. Hence, what about
having the two programming models in a unique language? Then, we turned to the monadic programming
style commented at the introduction of this paper.

Our actual proposal distributes the subject in a 75 % ‘pure’ functional + 25% ‘imperative’ functional. In
this way, we still keep a quarter of the course devoted to the essentials of the imperative model:

• control of sequence;

• repetition, as an alternative to recursion; and

• a mutable state, allowing efficient data structures (arrays) and permanent data (files).

We have chosen Haskell as the supporting language because it includes all the features we desire to commu-
nicate to our students, while enjoying an easy to learn and handy syntax. Moreover, it is widely known in the
functional language community, with much ongoing research on it, and providing very efficient compilers.
There exist also the possibility of using an interpreter like HUGS, which allows the students to quickly test
on the computer the examples learned at the classroom, and to easily develop small programs.

A detailed program is given next:

Part I: Introducing Programming
Lesson 1: Introduction. Algorithms and programs. Underlying hardware. Programming languages. Oper-
ating systems and translators.
Lesson 2: Program correctness. Program specification. Program design and verification.

Part II: Basic Functional Programming
Lesson 3: Basic types and simple expressions. Haskell: basic syntax and evaluation. Values and data types.
Integers, floating point numbers, booleans, characters and strings.
Lesson 4: Function definitions. Conditional expressions and guards. Simple patterns. Function application.
Function composition.
Lesson 5: Top-down design. Declaration scope. Programming with local definitions. Function refinement.
Lesson 6: Recursive functions. Mathematical induction. Recursive decomposition. Recursive functions
over integers. Proof by induction.
Lesson 7: The type system. Introducing classes. A tour of the built-in Haskell classes. Monomorphic and
polymorphic types. Type checking.
Lesson 8: Tuples. Concept. Value construction and patterns. Standard operations. Component selection and
pattern matching.

35

Lesson 9: Lists. Concept. Value construction and patterns. Polymorphic lists. Standard operations. Recur-
sive functions over lists. Proof by structural induction.
Lesson 10: Designing functions over lists. List traversals and searchs. Sorting lists: selection sort, insertion
sort, merge sort. Analysis of correctness.
Lesson 11: Program efficiency. O-notation. Basic orders of efficiency. Time complexity analysis.
Lesson 12: Higher-order functions. Functions as arguments. Higher-order functions over lists: filtering,
mapping and folding. Insertion sort revisited. Functions as values and results. Partial application. Sections
and lambda abstractions. Currying and uncurrying.
Lesson 13: List comprehensions. Concept and syntax. Examples: primes, quicksort. List comprehension
and higher-order functions.
Lesson 14: Introducing abstract data types. The ADT concept. Modules in Haskell. Examples: stacks,
FIFO queues, and sets. Implementation using lists.

Part III: Imperative Functional Programming
Lesson 15: The imperative computing model. Updatable variables and states. Sequential composition and
iteration. Relationship with the underlying hardware.
Lesson 16: Interactive input and output. Interactive keyboard input and screen output. Interactive pro-
grams with file input/output. Sequencing using >> and >>=. The do notation.
Lesson 17: Immutable arrays. Index types. The Array module. Array creation and subscripting. Useful
functions over arrays. Examples: tabulating results, binary search, inserting in a sorted array, matrix product.
Lesson 18: Mutable arrays. The ST (Strict State Thread) module. Basic actions over (ST s) a. Con-
structing a mutable computation. Examples: insertion sort, bubble sort.

Notice that we introduce classes (Lesson 7). We find difficult for students to understand the type information
provided by HUGS if they know nothing about Haskell classes. However, we restrict ourselves to explaining
the most basic concepts, and we do not expect our students to create new classes. On the other hand, algebraic
types are absent from the program presented here. The main use of algebraic types is the definition of
recursive types (e.g. trees), which we think are better suited for a second year. The structures we expect our
students to master are the linear ones: lists and arrays.

The last part of the course, the one devoted to imperative functional programming, starts (Lesson 15) with
an introduction to typical imperative concepts, without mentioning the functional paradigm.

The expected advantages of this new approach reside not only in keeping the same syntax for the two
styles, but also in keeping the same programming environment at the laboratories. This saves a lot of time
and mistakes. Besides that, it allows the student to continue using, in the imperative part, the usual functional
style for the non monadic functions, thus contributing to their maturity in the paradigm.

4 Imperative functional programming by example
This section contains a detailed presentation of the teaching sequence we have followed in the imperative part
of the course, and a number of illustrative monadic and non monadic algorithms we have used to transmit the
imperative concepts to the students.

4.1 Sequence and iteration: I/O interaction
The simplest imperative concept to start with is sequential composition of actions. For the first time in the
course, we wonder about the specific order in which actions should be performed. Input/output interaction is
an area in which the student can naturally appreciate that the control of this ordering is important.

36

Atomic actions We start by explaining output, the type IO (), and the most elementary I/O action, the
one doing nothing: done::IO (). Then, we go on with other atomic output actions: writing a character,
writing a string, writing a complete file, and so on. Then, we generalize to input, to the type IO a and its
atomic actions: return a, reading a character, reading a line, reading a complete file, and so on. As in [16]
and in [1, Chapter 10], we stress the difference between defining an I/O action and performing it.

Sequencing actions In order to be able to establish dialogues, some way of sequencing these elementary
actions must be provided. First we introduce the sequential combinator >>:

main = putChar ’a’ >> putChar ’b’

Once two actions have been combined, recursion provides the means to sequence a variable number of ac-
tions:

putStr "" = done
putStr (c:cs) = putChar c >> putStr cs

When an I/O action returns a value different from (), some way must be provided so that the rest of the
interaction can use this value. If we write

main = getChar >> putChar ’a’

the >> combinator simply ignores the value returned by the first action, so we justify the second combinator
>=:

main = getChar >>= putChar

We explain the type (>>=)::IO a -> (a -> IO b) -> IO b and build more complex interactions:

getLine = getChar >>= \c -> if c==’\n’ then return ""
else getLine >>= \cs -> return (c:cs)

To explain these ideas we do not appeal to monads. For students, the >>= combinator is just read ‘followed
by’.

The do-notation At this point, the need for a more compact and clear notation is strongly felt, and we
introduce the do-notation, explaining that this is just an abbreviation of the more cumbersome combination
of >>, >>= and lambda abstractions:

getLine = do c <- getChar
if c==’\n’ then return ""

else do cs <- getLine
return (c:cs)

We could have chosen to explain only the do-notation, instead of presenting it as an abbreviation of more
elementary concepts. But, in doing so, we could have transmitted the impression of a magical behaviour
behind imperative-style algorithms. We have preferred to remark that programs are still functional.

Repetition Frequently in interactions, there is the need to repeat an action until some desired property
holds. Here is an example of a program reading an integer between 1 and a given number n:

readInt :: Int -> IO Int
readInt n = do putStr ("Type an integer between 1 and " ++ show n ++ ": ")

s <- getLine
let x = read s in

if all isDigit s && 1 <= x && x <= n then return x
else readInt n

37

We tell the students that this construction is very typical in an imperative language and that there are special
control structures such as while and repeat to express it.

Top down design of interactions Monadic dialogs should not look like long sequences of actions. Top
down design has its place here. When a complex dialogue must be designed, it is advisable to split it into
pieces, each one taking care of a part of the interaction. For instance, we can design a program performing
the following loop: displaying a menu, inviting the user to choose an option, performing the corresponding
action, and going back to the loop, or leaving it if the option chosen was the last one:

main = do showMenu
i <- readInt 3
case i of
1 -> do {action1 ; main}
2 -> do {action2 ; main}
3 -> done

4.2 Read only state: immutable arrays
The next important imperative concept is the array data structure. It mimics the computer memory and so
allows accessing to any single component in constant time, independently of the number of elements stored
in the array. It is important that students understand the differences between this structure and lists: (i) once
created, an array cannot be extended with new elements to produce a new array; and (ii) the recursion patterns
for arrays are based on changing index intervals instead of on applying the recursive function to a substructure
of the same type.

The type Array a b of immutable arrays is a good starting point for introducing later on mutable
arrays. There are many algorithms, mainly reading from immutable arrays, having the same time complexity
as if they were programmed in an imperative language. One of them is linear search:

linSearch :: Eq b => Array Int b -> b -> Maybe Int
linSearch a x = linSearch’ a x low up

where (low,up) = bounds a
linSearch’ a x j up

| j > up = Nothing
| x == a!j = Just j
| otherwise = linSearch’ a x (j+1) up

We will always use the technique shown in this example, in every recursive definition related to either im-
mutable or mutable arrays: the function to be designed is embedded in a more general one having at least
two additional parameters, the following index to be dealt with, and the upper bound of this index. This more
general function is recursively designed: a base case is reached when we get the empty interval of indices; in
the recursive case, we decrease the length of the index interval. Of course, if the array is sorted, we can do it
better by using a binary search:

binSearch :: Ord b => Array Int b -> b -> Maybe Int
binSearch a x = binSearch’ a x low up

where (low,up) = bounds a
binSearch’ a x j k

| j > k = Nothing
| x < a!m = binSearch’ a x j (m - 1)
| x == a!m = Just m
| x > a!m = binSearch’ a x (m + 1) k
where m = (j + k) ‘div‘ 2

38

It is well known that this algorithm has logarithmic cost. We emphasize the fact by explaining that no search
algorithm using lists as a search structure can beat this cost.

Other interesting algorithms with immutable arrays include matrix multiplication, Fibonacci tabulation,
and the definition of higher order functions for arrays, similar to map, fold, all, any and so on. We also
give a version of insertion sort for immutable arrays (whose cost is in O(m2), being m the length of the
array):

isort :: Ord b => Array Int b -> Array Int b
isort a = foldl insert a [low+1..up]

where (low,up) = bounds a
insert :: Ord b => Array Int b -> Int -> Array Int b
insert a n = insert’ a low n

where (low,_) = bounds a
insert’ a j n

| j >= n = a
| a!n > a!j = insert’ a (j+1) n
| otherwise = a // ((j,a!n) : [(k+1,a!k) | k <- [j..n-1]])

This algorithm will be the basis for a similar algorithm using mutable arrays. A call to insert a n
assumes that the elements of a in positions [low..n-1] are ordered, and that low < n ≤ up; then, it
rearranges the elements in positions [low..n] in such a way that, at the end, this portion becomes ordered.
In the worst case, each call to insert creates a new array by modifying the one given as parameter. This
cost is in O(m), being m the number of elements in the array. As there are m− 1 calls to insert, the total
cost of isort is in O(m2).

4.3 Read-write state: mutable arrays
Coming back to the analogy between arrays and the computer memory, it is easy to justify the need for
mutable arrays: we would like to modify an array element, as we can do with a memory position, with a cost
in O(1). We explain that it is possible to express mutable arrays in a pure functional language such as Haskell
provided two conditions are met:

• The programmer imposes a strict sequential order to the actions performed on a mutable array.

• The programmer accepts that, once a mutable array is modified, only the new copy is available to the
remaining actions of the sequence. This implies to accept that a name is connected to different values
in different parts of a text (we know that this fact does not violate transparential referency since a name
denotes always the same mutable variable. What ‘changes’ is the state. More exactly, it is passed
around from one action to the following one).

We explain that the tools for creating sequences of mutable actions are already known: the >> and >>=
combinators, the return action, and the do-notation are not privative of the type IO a. We say that they
are overloaded and that the type ST s a of mutable state actions can also enjoy of them (we say in passing
that both constructors, IO and ST s, and some other, belong to the constructor class Monad).

In the following, we assume that the library module ST, standard in all Haskell distributions, which
provides the interface to the mutable state actions proposed in Launchbury and Peyton Jones’s paper [11]
has been imported. We explain to the students the elementary mutable actions: creating a mutable array
or a mutable variable, reading from them, writing to them, and so on. We also present the special function
runST::ST s a -> awhich is mandatory if we wish to encapsulate state-based computations into a non
state-based one.

Our first algorithms use embedding and recursion on indices as we did with immutable arrays. Here is
the mutable version of insert:

39

insert :: Ord b => STArray s Int b -> Int -> ST s ()
insert ma n = insert’ ma low n

where (low,_) = boundsSTArray ma
insert’ :: Ord b => STArray s Int b -> Int -> Int -> ST s ()
insert’ ma j n

| j >= n = return ()
| otherwise = do a_n <- readSTArray ma n

a_j <- readSTArray ma j
if a_n > a_j then insert’ ma (j+1) n

else do shift ma j (n-1)
writeSTArray ma j a_n

The reader is invited to compare this program with the one given in Section 4.2. The similarities are obvious.
The big difference is that now, as we are working with only one array instead of with two, the order in
which modifications to the array are performed is crucial. Once we have found that element a n must go
into position j, we must first shift the elements between position j and position n-1 one place to the right
and then write a n into position j. Should we change this order, the array would become corrupted. The
shifting action can also be defined by recursion on indices. We will present a higher order version of shift
in Section 4.4. The cost of insert is clearly in O(m), being m = n - low + 1 the length of the array
portion affected by insertion. Every position in this portion is subject to a read or/and a write operation, each
one with a cost in O(1).

For the complete insertion sort algorithm, we cannot use foldl because the types do not match. We
cannot either use the monadic version of foldl, called foldM::Monad m => (a -> b -> m a)
-> a -> [b] -> m a, for much the same reason. For the moment, we content ourselves with a recursive
version:

mutIsort :: Ord b => STArray s Int b -> ST s ()
mutIsort ma = mutIsort’ (low+1) up ma

where (low,up) = boundsSTArray ma
mutIsort’ :: Ord b => Int -> Int -> STArray s Int b -> ST s ()
mutIsort’ j up ma

| j > up = return ()
| otherwise = do insert ma j

mutIsort’ (j+1) up ma

If the programmer wishes to hide the whole stateful computation, he can use runST to encapsulate it:

isort :: Ord b => Array Int b -> Array Int b
isort a = runST (do ma <- thawSTArray a

mutIsort ma
a’ <- unsafeFreezeSTArray ma
return a’)

The function first converts an immutable array into a mutable one, sorts it, and saves its final state into a new
immutable array which is returned as result. From the outside, the algorithm looks like sorting immutable
arrays.

4.4 Higher order abstractions
Functional programming is known to be good for abstracting common computation patterns into higher order
functions. In the area of monadic algorithms, useful computation patterns more or less correspond to control
structures present in most imperative languages.

40

Simulating an imperative for-loop The first useful abstraction is the predefined function

sequence :: Monad m => [m a] -> m ()
sequence = foldr (>>) (return ())

converting a list of monadic actions into a single action which performs sequentially the actions in the list.
Used in combination with map, it can serve as a good simulation of the for control structure of many im-
perative languages. Consider the expresion sequence (map f indices). Function map creates a list
of actions by mapping a function, depending on an index, to the list of indices; sequence threads the ac-
tion list into a single action. So, by providing and appropriate list of indices and a ’body’ function we get a
functional equivalent of the imperative for. Here is the higher order implementation of function shift in
Section 4.3:

shift :: STArray s Int b -> Int -> Int -> ST s ()
shift ma i j = sequence (map action [j,j-1..i])

where action k = do x <- readSTArray ma k
writeSTArray ma (k+1) x

Notice the order in which positions are shifted. Likewise, here is the higher order version of mutIsort of
Section 4.3:

mutIsort :: Ord b => STArray s Int b -> ST s ()
mutIsort ma = sequence (map (insert ma) [low+1..up])

where (low,up) = boundsSTArray ma

If the teacher wishes to use a style with a more imperative flavour, he can define

for :: Monad m => [a] -> (a -> m ()) -> m ()
for indices body = sequence (map body indices)

and translate the above examples to use this construction. A slightly different for function was originally
proposed in [12]. For instance, the shift function would look like:

shift ma i j = for [j,j-1..i] action
where action k = ...

But we claim that for functional programmers (e.g. our students) the direct use of sequence and map is
more illustrative than that of for.

General linear search When working with mutable arrays, useful abstractions include the corresponding
versions of map, fold, any, all, and so on. Another interesting abstraction is looking for the first array
element satisfying a given property, i.e. a generalization of linear search:

gLinSearch :: STArray s Int b -> (b -> Bool) -> ST s (Maybe Int)
gLinSearch ma p = gLinSearch’ ma p low up

where (low,up) = boundsSTArray ma
gLinSearch’ ma p j up

| j > up = return Nothing
| otherwise = do a_j <- readSTArray ma j

if p a_j then return (Just j)
else gLinSearch’ ma p (j+1) up

By using it, we can write a very compact version of the mutable insert function of Section 4.3:

insert ma n = do a_n <- readSTArray ma n
˜(Just j) <- gLinSearch ma (a_n <=)
shift ma j (n-1)
writeSTArray ma j a_n

41

Notice that, in the worst case, the search ends up with j = n. In this case, the shift action just does nothing,
and writing a_n into position n produces no harm. The irrefutable pattern in the second line is a requirement
of the do-notation.

Simulating an imperative while-loop The last abstraction we present is a kind of while loop. Differently
from the one presented in [14, Chapter 14] for the type IO, we have found that the action in the body is
usually different from one iteration to the next, so we propose to give a list of actions as the second argument:

while :: Monad m => m Bool -> [m ()] -> m ()
while test [] = return ()
while test (a:as) = do continue <- test

if continue then do {a ; while test as}
else return ()

The loop ends either when the test fails or when the list of actions is —if ever— exhausted. By using it, we
can write a higher order version of the well known bubble sort algorithm:

bubbleSort :: Ord b => STArray s Int b -> ST s ()
bubbleSort ma = do boolVar <- newSTRef True

while (readSTRef boolVar) (map (stage boolVar up)
[low..up-1])

where (low,up) = boundsSTArray ma
stage v up k = do writeSTRef v False

sequence (map (action v) [up-1,up-2..k])
action v j = do x <- readSTArray ma j

y <- readSTArray ma (j+1)
if x <= y then return ()

else do -- array is being changed
writeSTArray ma j y
writeSTArray ma (j+1) x
writeSTRef v True

For an array with n elements, the algorithm performs, in the worst case, n − 1 stages, with index k ranging
from low to up-1. At the end of stage k we have at position k the next minimum element of the array.
So, the array gets sorted from left to right. We make use of a mutable boolean variable boolVar to record
whether there has been any modification to the array in the current stage. If not, the test fails in the next
iteration, the while loop is exited, and the whole computation terminates. This means that, for an initially
sorted array, bubble sort performs an only stage, with a time complexity in O(n).

4.5 Putting all together
At the end of the course, students should be able to combine imperative functional programming with classical
functional programming. So, in order to know if they have acquired these skills, we have proposed them
to write, as a final laboratory assignment, a program whose core is the Floyd algorithm [4]. The aim of
this algorithm is to compute the shortest paths between each pair of nodes of a given graph. It receives
the graph as input, and generates as output two bidimensional arrays: one to record the shortest distance
between each pair of nodes; and the other to store the necessary information to obtain the shortest paths.
This is a dynamic programming problem and, of course, first-year students are not expected to discover it by
themselves. Instead, we explain to them in words what has to be done to solve the problem, and then they
have to implement it.

We have chosen this example because it combines all the features we have taught in the course:

42

• There are several I/O operations, and it is important to perform them in the right sequence: at the
beginning, the original graph is to be read from a file; after computing the arrays, the program interacts
with the user, who can ask for the shortest path between any pair of nodes.

• It is convenient to use mutable arrays, because the core of the algorithm is a loop that computes the
paths by refining the solutions found so far. At each stage k, for each pair of nodes (i,j) it is decided if
a better path between i and j can be obtained by visiting node k as an intermediate step. Each time a
better path is found, both arrays are modified.

• After computing the arrays, there is no need to modify them anymore. Therefore, immutable arrays
can be used.

• It is easier and clearer to express Floyd’s algorithm by using higher order functions than by using
recursion.

Assuming that the original graph is represented by a matrix in which position (i,j) contains∞ if the nodes
are not directly connected, and contains the distance of the connection otherwise, a compact and precise way
to write the algorithm is:

-- Encapsulates the mutable computations of the program
floydAlg :: Array (Int,Int) Int -> (Array (Int,Int) Int, Array (Int,Int) Int)
floydAlg t = runST (do tm <- thawSTArray t

um <- newSTArray (bounds t) 0
floyd tm um
ti <- unsafeFreezeSTArray tm
ui <- unsafeFreezeSTArray um
return (ti,ui))

-- Floyd algorithm using two mutable arrays
floyd :: STArray a (Int,Int) Int -> STArray a (Int,Int) Int -> ST a ()
floyd tm um = sequence (map stage [l..u])

where ((l,l’),(u,u’)) = boundsSTArray tm
stage k = sequence (map (refine k) (range ((l,l’),(u,u’))))
refine k (i,j) = do tij <- readSTArray tm (i,j)

tik <- readSTArray tm (i,k)
tkj <- readSTArray tm (k,j)
if tik + tkj < tij

then do writeSTArray tm (i,j) (tik + tkj)
writeSTArray um (i,j) k

else return ()

We have found out that our students are able to write programs similar to the solution given above, and that
they understand the conceptual differences between ‘normal’ operations and operations involving a state.

5 Results
We only report here the results relevant to the subject of this paper. General results about the use of a
functional language in a first-year course have been reported elsewhere (see, for example, [2]).

At the time of writing these lines we can assess whether part of the goals of the course has been met or
not but, unfortunately, we cannot do it for all of them. In particular, it is very early to know which kind of
difficulties these student will have when confronted, in the next few years, to actual imperative languages

43

such as C or Pascal. Will the concepts learned in our course be enough to understand the new languages?
Will they recognize the imperative model of computation in spite of the change of syntax? Will they easily
replace recursion by iteration? We plan to follow the evolution of these students in the next two years to
collect information about this aspect but, for now, we can only guess what may happen.

For the moment, through their laboratory assignments and written examinations, we have collected
enough information to assess the quality of the skills they have acquired. The most important conclusion
relevant to this paper is that we have not detected the students to have special difficulties with monadic
algorithms. In particular, they accept very naturally the concepts of sequential actions and of mutable state.

With respect to sequential composition, we think that the do-notation, proposed originally in [10], de-
serves most of the merit for it. It is very simple, illustrative of what is going on, and hides a lot of clumsy
details that the students are happy to ignore. In our opinion, it has been a very good decision to include it as
part of Haskell.

However that, and perhaps because the do-notation is a high level abstraction, the students tend to confuse
the <- in a do sequence with the = in an equation, and produce programs in which they mix both notations,
such as the following one:

main = do x <- action
y = f x
...

The confusion is favoured by the fact that the syntax <- is also used in list comprehensions, with a second
meaning. The essence of the problems is that they do not see a clear difference between the type IO a and
the type a. This question —Why are they different?— has been very frequently asked to us. Fortunately, the
type system takes care of these mistakes and forces them to use the correct syntax. The question has also to
be with understanding the >>= combinator underlying the syntax x <- action. We have found that this
combinator is much more difficult to understand than the >> one. For this reason, we think that perhaps it is
a good approach to move quickly from using raw >>= and lambda abstractions to the do-notation.

Another interesting result is that higher order abstractions, such as those proposed in Section 4.4, are very
easily apprehended in this part of the course. For instance, they are willing to give up recursion on behalf of
using the sequence-map combination, when they detect that the same action has to be repeated for a set
of indices. This is in contrast to what has happened in the rest of the course, where they are strongly reluctant
to use higher order functions (in particular, those of the fold family).

In summary, we think that the approach followed here can be useful for those having context conditions
similar to ours: (i) you believe that functional programming has didactic advantages over imperative program-
ming for first-year students; (ii) your students need also to understand the imperative model of computation
to be able to learn imperative languages in subsequent courses; (iii) there is no much time available for the
course.

References
[1] R. Bird. Introduction to Functional Programming using Haskell. Prentice-Hall, 2 edition, 1998.

[2] C. Clack and C. Myers. The dys-functional student. In LNCS 1022, pages 289–309. Springer-Verlag, 1995.
FPLE’95, Nijmegen (The Netherlands).

[3] A. Davison. Teaching C after Miranda. In LNCS 1022, pages 35–50. Springer-Verlag, 1995. FPLE’95, Nijmegen
(The Netherlands).

[4] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

[5] P. Hartel and H. Muller. Functional C. Addison-Wesley, 1997.

[6] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In ACM Principles of Programming Lan-
guages. ACM, 1993. Charleston, N. Carolina.

44

[7] S. Joosten, K. van den Berg, and G. van der Hoeven. Teaching functional programming to first-year students.
Journal of Functional Programming, 3:49–65, 1993.

[8] E. T. Keravnou. Introducing computer science undergraduates to principles of programming through a functional
language. In LNCS 1022, pages 15–34. Springer-Verlag, 1995. FPLE’95, Nijmegen (The Netherlands).

[9] T. Lambert, P. Lindsay, and K. Robinson. Using Miranda as a first programming language. Journal of Functional
Programming, 3:5–34, 1993.

[10] J. Launchbury. Lazy Imperative Programming. In ACM Workshop on State in Programming Languages, pages
1–11, 1993.

[11] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads. In Proceedings of the ACM Conference on
Programming Languages Design and Implementation, PLDI’94, pages 24–35, June 1994.

[12] J. Launchbury and S. L. Peyton Jones. State in Haskell. Lisp and Symbolic Computation, 8(4):293–341, Dec. 1995.
Elaboration of [11].

[13] M. Núñez, P. Palao, and R. Peña. A Second Year Course on Data Structures based on Functional Programming. In
FPLE’95. LNCS 1022, pages 65–84. Springer-Verlag, 1995.

[14] S. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley, 1996.

[15] P. Wadler. The Essence of Functional Programming. In 19’th Symposium on Principles of Programming Languages.
ACM, January 1992. Alburquerque, New Mexico.

[16] P. Wadler. How to Declare an Imperative. In International Logic Programming Symposium. MIT Press, 1995.

[17] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors, Advanced Functional Pro-
gramming. LNCS 925. Springer-Verlag, 1995.

45

46

