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Abstract

Safe is a first-order eager language with heap regions and unusual facilities such as programmer-controlled
destruction and copying of data structures. The regions are disjoint parts of the heap where the compiler
may allocate data structures. Thanks to regions, a runtime garbage collector is not needed. The language
and its associated type system, guaranteeing that destruction facilities and region management are done in
a safe way, have been presented previously.
In this paper, we start from a high-level big-step operational semantics for Safe, and in a series of semi-
formal steps we derive its compilation to an imperative language and imperative abstract machine. Once the
memory needs of the machine are known, we enrich the semantics with memory consumption annotations
and prove that the enriched semantics is correct with respect to the translation and the abstract machine.
All the steps are derived in such a way that it is easy to understand the translation and to formally establish
its correctness.
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1 Introduction

Safe is a first-order eager functional language with facilities for programmer-

controlled destruction and copying of data structures. It provides also regions,

i.e. disjoint parts of the heap where the compiler allocates data structures. The

allocation and deallocation of such regions are associated with function applica-

tions. The Safe language and a sharing analysis for it were published in [11]. We

also defined a type system and a type inference algorithm [10,9] guaranteeing that

destruction facilities and region management are done in a safe way.

1 Partially supported by the Madrid Region Government under grant S-0505/TIC/0407 (PROMESAS).
2 Email: montenegro@fdi.ucm.es . Work supported by the MEC FPU grant AP2006-02154.
3 Email: ricardo@sip.ucm.es, csegura@sip.ucm.es

Electronic Notes in Theoretical Computer Science 246 (2009) 167–182

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.021

mailto:montenegro@fdi.ucm.es
mailto:ricardo@sip.ucm.es
mailto:csegura@sip.ucm.es
http://www.elsevier.com/locate/entcs


Apparently, the language is impure as cell and region destruction, if used without

rectrictions, is a (very dangerous) side-effect. But if we consider only those programs

accepted by such a type system, then the language is pure and side-effects free.

In this paper we derive an imperative machine from a high-level big-step opera-

tional semantics and give the function that translates Safe programs to imperative

code for that machine. The derivation is achieved by incremental refinements across

a small-step operational semantics and an intermediate abstract machine.

Once the memory needs of the machine are known, we enrich the semantics with

memory consumption annotations and prove that the translation and the abstract

machine are correct with respect to the enriched semantics.

We have also implemented a further code generation phase from the last machine

presented here (called SVM) to bytecode of the Java Virtual Machine. Safe is part

of a Proof Carrying Code project and the aim is producing this bytecode together

with a formal certificate. In our case, the certificate will prove that the execution

of the code is free from dangling pointers.

In Section 2 we give a brief description of the language. Sections 3 and 4 re-

spectively describe a big-step operational semantics and an equivalent small-step

operational semantics. Section 5 describes an abstract machine, called SAFE-M2,

where a stack of continuations is used. Section 6 presents the imperative machine

SVM, and Section 7 the translation schemes from Safe to imperative code. A de-

tailed example is given, where efficient tail recursion is apparent. In Section 8 we

provide the enriched big-step semantics and a proof that its resource annotations

reflect the real consumptions done by the translated program. Finally, in Section 9

we survey some related work and conclude.

2 Summary of Safe

Safe is a first-order polymorphic functional language whose syntax is similar to that

of (first-order) Haskell or ML, and has some facilities to manage memory. The

memory model is based on heap regions where data structures are built. However,

in Full-Safe in which programs are written, regions are implicit. These are inferred

when Full-Safe is desugared into Core-Safe [8]. As the semantics presented in this

paper are defined at Core-Safe level, we describe it in detail.

The allocation and deallocation of regions is bound to function calls: a working

region is allocated when entering the call and deallocated when exiting it. Inside

the function, data structures may be built but they can also be destroyed by using a

destructive pattern matching denoted by ! or a case! expression, which deallocates

the cell corresponding to the outermost constructor. Using recursion, the recursive

portions of the whole data structure may be deallocated. We say that it is con-

demned. As an example, we show in Full-Safe an append function destroying the

first list’s spine, while keeping its elements in order to build the result:

concatD []! ys = ys
concatD (x:xs)! ys = x : concatD xs ys

As a consequence, appending needs constant heap space, while the usual version
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needs linear heap space. The fact that the first list is lost is reflected in the type of

the function: concatD :: [a]! -> [a] -> [a].

The data structures which are not part of the function’s result are built in the

local working region, which we call self, and they die when the function terminates.

As an example we show a destructive version of the treesort algorithm:

treesortD :: [Int]! -> [Int]
treesortD xs = inorder (mkTreeD xs)

First, the original list xs is used to build a search tree by applying function mkTreeD

(defined below). This tree is then traversed in inorder to produce the sorted list.

The tree is not part of the result of the function, so it will be built in the working

region and will die when the treesortD function returns (in Core-Safe where regions

are explicit this will be apparent). The original list is destroyed and the destructive

appending function is used in the traversal so that constant heap space is consumed.

Function mkTreeD inserts each element of the list in the binary search tree.

mkTreeD :: [Int]! -> BSTree Int
mkTreeD []! = Empty
mkTreeD (x:xs)! = insertD x (mkTreeD xs)

The function insertD is the destructive version of insertion in a binary search tree.

Then mkTreeD exactly consumes the space occupied in the heap by the list. The

nondestructive version of this function would consume in the worst case quadratic

heap space.
insertD :: Int -> BSTree Int! -> BSTree Int
insertD x Empty! = Node Empty x Empty
insertD x (Node lt y rt)!

| x == y = Node lt! y rt!
| x > y = Node lt! y (insertD x rt)
| x < y = Node (insertD x lt) y rt!

Notice in the first guard, that the cell just destroyed must be built again. When a

data structure is condemned its recursive children may subsequently be destroyed or

they may be reused as part of the result of the function. We denote the latter with

a !, as shown in this function insertD. This is due to safety reasons: a condemned

data structure cannot be returned as the result of a function, as it potentially may

contain dangling pointers. Reusing turns a condemned data structure into a safe

one. The original reference is not accessible any more. So, in the example lt and rt

are condemned and they must be reused in order to be part of the result.

Data structures may also be copied denoted appending @ to a variable. Only

the recursive part of the structure is copied, while the elements are shared with the

old one. This is useful when we want non-destructive versions of functions based

on the destructive ones. For example, we can define treesort xs = treesortD (xs@).

In Fig. 1 we show the syntax of Core-Safe. A program prog is a sequence of

possibly recursive polymorphic data and function definitions followed by a main

expression e using them, whose value is the program result. The abbreviation xi
n

stands for x1 · · · xn. Destructive pattern matching is desugared into case! expres-

sions. Constructions are only allowed in let bindings, and atoms are used in function

applications, case/case! discriminant, copy and reuse. Regions are explicit in con-

structor application and the copy expression. Function definitions have additional

region parameters rj
l where data structures may be built. In the right hand side
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prog → datai
n
; decj

m
; e

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l
{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}

e → a {atom: literal c or variable x}

| x@r {copy}

| x! {reuse}

| f ai
n @ rj

l {function application}

| let x1 = be in e {non-recursive, monomorphic}

| case x of alti
n

{read-only case}

| case! x of alt i
n

{destructive case}

alt → C xi
n → e

be → C ai
n @ r {constructor application}

| e

Fig. 1. Core-Safe language definition

expression only the rj and its working region self may be used. Functional types

include region parameter types.

Polymorphic algebraic data types are defined through data declarations. Alge-

braic types declarations have, after region inference, additional type variables indi-

cating the regions where the constructed values of that type are allocated. Region

inference also adds region arguments to constructors, forcing the restriction that

recursive substructures must live in the same region as their parent. For example,

after region inference, trees are represented as follows:

data BSTree a @ rho = Empty@rho | Node (BSTree a@rho) a (BSTree a@rho) @ rho

There may be several region parameters when nested types are used: different

components of the data structure may live in different regions. In that case the last

region variable is the outermost region where the constructed values of this type

are allocated. In the following example

data T a b @ rho1 rho2 = C1 ([a] @ rho1) @ rho2 | C2 b @ rho2

rho2 is where the constructed values of type T are allocated, while rho1 is where the

list of a C1 value is allocated.

Function splitD is an example of function with several output regions. In order

to save space we show here a semi-desugared version with explicit regions. Notice

that the resulting tuple and its components may live in different regions:

splitD :: Int -> [a]!@rho2 -> rho1 -> rho2 -> rho3 -> ([a]@rho1, [a]@rho2)@rho3
splitD 0 zs! @ r1 r2 r3 = ([]@r1, zs!)@r3
splitD n []! @ r1 r2 r3 = ([]@r1, []@r2)@r3
splitD n (y:ys)! @ r1 r2 r3 = ((y:ys1)@r1, ys2)@r3

where (ys1, ys2) = splitD (n-1) ys @r1 r2 r3

3 Big-step semantics

In Fig. 2 we show the big-step operational semantics of the core language expres-

sions. We use v, vi, . . . to denote values, i.e. either heap pointers or basic constants,

and p, pi, q, . . . to denote heap pointers. We use a, ai, . . . to denote atoms, i.e. either

program variables or basic constants. The former are denoted by x, xi, . . . and the

latter by c, ci etc. Finally, we use r, ri, . . . to denote region variables.

A judgement of the form E � h, k, e ⇓ h′, k′, v means that expression e is suc-
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E � h, k, c ⇓ h, k, c [Lit ]

E[x �→ v] � h, k, x ⇓ h, k, v [Var 1]

j ≤ k (h′, p′) = copy(h, p, j)

E[x �→ p, r �→ j] � h, k, x@r ⇓ h′, k, p′
[Var2]

fresh(q)

E[x �→ p] � h � [p �→ w], k, x! ⇓ h � [q �→ w], k, q
[Var 3]

(f xi
n@ rj

m = e) ∈ Σ [xi �→ E(ai)
n
, rj �→ E(r′j)

m
, self �→ k + 1] � h, k + 1, e ⇓ h′, k′ + 1, v

E � h, k, f ai
n@ r′j

m
⇓ h′ |k′ , k′, v

[App]

E � h, k, e1 ⇓ h′, k′, v1 E ∪ [x1 �→ v1] � h′, k′, e2 ⇓ h′′, k′′, v

E � h, k, let x1 = e1 in e2 ⇓ h′′, k′′, v
[Let1]

j ≤ k fresh(p) E ∪ [x1 �→ p] � h � [p �→ (j, C vi
n)], k, e2 ⇓ h′, k′, v

E[r �→ j, ai �→ vi
n] � h, k, let x1 = C ai

n@r in e2 ⇓ h′, k′, v
[Let2]

C = Cr E ∪ [xri �→ vi
nr ] � h, k, er ⇓ h′, k′, v

E[x �→ p] � h[p �→ (j, C vi
nr)], k, case x of Ci xij

ni → ei
m

⇓ h′, k′, v
[Case ]

C = Cr E ∪ [xri �→ vi
nr ] � h, k, er ⇓ h′, k′, v

E[x �→ p] � h � [p �→ (j, C vi
nr)], k, case! x of Ci xij

ni → ei
m

⇓ h′, k′, v
[Case!]

Fig. 2. Operational semantics of Safe expressions

cessfully reduced to normal form v under runtime environment E and heap h with

k + 1 regions, ranging from 0 to k, and that a final heap h′ with k′ + 1 regions

is produced as a side effect. Runtime environments E map program variables to

values and region variables to actual region identifiers. We adopt the convention

that for all E, if c is a constant, E(c) = c.

A heap h is a finite mapping from fresh variables p (we call them heap point-

ers) to construction cells w of the form (j, C vi
n), meaning that the cell resides in

region j. We say that region(w) = j. Actual region identifiers j are just natural

numbers. Formal regions appearing in a function body are either region variables

r corresponding to formal arguments or the constant self . Deviating from other

authors, by h[p �→ w] we denote a heap h where the binding [p �→ w] is highlighted.

On the contrary, by h � [p �→ w] we denote the disjoint union of heap h with the

binding [p �→ w]. By h |k we denote the heap obtained by deleting from h those

bindings living in regions greater than k, and by dom(h), the set {p | [p �→ w] ∈ h}.

The semantics of a program is the semantics of the main expression in an envi-

ronment Σ, which is the set containing all the function and data declarations.

Rules Lit and Var1 just say that basic values and heap pointers are normal

forms. Rule Var2 executes a copy expression copying the data structure pointed

to by p and living in a region j′ into a (possibly different) region j. The runtime

system function copy follows the pointers in recursive positions of the structure

starting at p and creates in region j a copy of all recursive cells. Some restricted

type informaton is available in our runtime system so that this function can be

implemented. The pointers in non recursive positions are kept identical in the new

cells. This implies that both data structures may share some subparts.

M. Montenegro et al. / Electronic Notes in Theoretical Computer Science 246 (2009) 167–182 171



In rule Var3, the binding [p �→ w] in the heap is deleted and a fresh binding

[q �→ w] to cell w is added. This action may create dangling pointers in the live

heap, as some cells may contain free occurrences of p.

Rule App shows when a new region is allocated. Notice that the body of the

function is executed in a heap with k+2 regions. The formal identifier self is bound

to the newly created region k + 1 so that the function body may create DSs in this

region or pass this region as a parameter to other function calls. Before returning

from the function, all cells created in region k′+1 are deleted. This action is another

source of possible dangling pointers.

Rules Let1, Let2, and Case are the usual ones for an eager language, while rule

Case ! expresses what happens in a destructive pattern matching: the binding of

the discriminant variable disappears from the heap. This action is the last source

of possible dangling pointers.

In the following, we will feel free to write the derivable judgements as E �

h, k, e ⇓ h′, k, v because of the following:

Proposition 3.1 If E � h, k, e ⇓ h′, k′, v is derivable, then k = k′.

Proof. Straightforward, by induction on the depth of the derivation. �

Proposition 3.2 If e0 is the main expression of a Safe program, and [self �→ 0] �

{}, 0, e0 ⇓ hf , 0, vf is derivable, then in every judgement E � h, k, e ⇓ h′, k, v of the

derivation E(self ) = k holds.

Proof. The property is true at the initial judgement and is preserved in every

inductive rule. The only relevant case is rule App. �

4 Small-Step Semantics

In Figure 3 we show the small-step semantic rules. There are two kinds of judge-

ments. The first kind, E,h, k0, k, e −→ h′, k0, v, is applied when an expression e is

evaluated to a value in one step. These correspond to literals, variables, copy ex-

pressions, and reuse expressions. The other kind, E,h, k0, k, e −→ E′, h′, k0, k
′, e′,

covers the remaining cases: function application, let, case and case! expressions.

In the configurations, k denotes the highest region available in h, as in the big step

semantics. We explain below the meaning of k0.

Notice that let expressions are marked with a natural number δ and an envi-

ronment E. In rule App, the number of available regions is incremented by one, as

a new local region is allocated and assigned number k + 1. Additionally, the envi-

ronment E is discarded, as in the function body only the arguments and the self

region are in scope. However, due to let expressions, a continuation is possible after

function application. Then, we need to recover the discarded environment and the

original value of k. The environment is kept in the binding and number δ is used to

remember the newly created regions during the evaluation of the bound expression,

so that the original k can be later recovered. The initial values of δ and E are

respectively 0 and ⊥, which we can assume are annotated in the text. Rule Let4b
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k ≥ k0

E,h, k0, k, c −→ h |k0 , k0, c
[Lit ]

k ≥ k0

E[x �→ v], h, k0, k, x −→ h |k0 , k0, v
[Var 1]

k ≥ k0 k ≥ j (h′, q) = copy(h, p, j)

E[x �→ p, r �→ j], h, k0, k, x@r −→ h′, k0, q
[Var2]

k ≥ k0 fresh(q)

E[x �→ p], h � [p �→ w], k0, k, x! −→ h � [q �→ w], k0, q
[Var3]

(f xi
n@ rj

m = e) ∈ Σ

E, h, k0, k, f ai
n@ r′j

m
−→ [xi �→ E(ai)

n
, rj �→ E(r′j)

m
, self �→ k + 1], h, k0, k + 1, e

[App]

j ≤ k fresh(p)

E[r �→ j, ai �→ vi
n], h, k0, k, let x1 =⊥

0 C ai
n@r in e −→ E ∪ [x1 �→ p], h � [p �→ (j, C vi

n)], k0, k, e
[Let3]

E, h, k, k, e1 −→ h′, k, v1

E,h, k0, k, let x1 =⊥
0 e1 in e −→ E ∪ [x1 �→ v1], h

′, k0, k, e
[Let4a]

E, h, k, k, e1 −→ E′, h′, k, k + η, e′1

E, h, k0, k, let x1 =⊥
0 e1 in e −→ E′, h′, k0, k + η, let x1 =E

η e′1 in e
[Let4b]

E′′ �= ⊥ E,h, k, k + δ, e1 −→ h′, k, v1

E, h, k0, k + δ, let x1 =E′′

δ e1 in e −→ E′′ ∪ [x1 �→ v1], h
′, k0, k, e

[Let4c]

E′′ �= ⊥ E,h, k, k + δ, e1 −→ E′, h′, k, k + η, e′1

E, h, k0, k + δ, let x1 =E′′

δ e1 in e −→ E′, h′, k0, k + η, let x1 =E′′

η e′1 in e
[Let4d]

C = Cr

E[x �→ p], h[p �→ (j, C bi
nr

)], k0, k, case x of Ci xij
ni → ei

m
−→ E ∪ [xri �→ vi

nr ], h, k0, k, er

[Case]

C = Cr

E ∪ [xri �→ vi
nr ], h ∪ [p �→ (j, C bi

nr
)], k0, k, case! x of Ci xij

ni → ei
m

−→ E ∪ [xri �→ vi
nr ]h, k0, k, er

[Case !]

Fig. 3. Small-step operational semantics of Safe expressions

saves the environment for the first time and rule Let4d updates the information as

necessary during the evaluation of the bound expression. In case the evaluation

of the bound expression is successful, rules Let3, Let4a or Let4c will be applied to

proceed with the evaluation of the main expression.

Those new regions created during the evaluation of the bound expression cannot

contain the result of the evaluation because after function application the local

region is deallocated. Region k0 denotes the highest region available when the

machine stops reducing the expression. Initially k = k0 = 0. Rule App increments

k while rules Lit , Var 1, Var2 and Var3 discard all the local regions back to k0.

This small-step semantics is equivalent to the previously defined big-step seman-

tics: for any k and k0 ≤ k, Δ, k, e ⇓ Θ, k, v if and only if Δ, k0, k, e −→∗ Θ, k0, k, v.

5 The abstract machine SAFE-M2

Our next refinement is introducing an abstract machine, called SAFE-M2 because

there was a previous one called SAFE-M1 now abandoned. A configuration of the

machine is a 7-tuple (h, k0, k, e, E, S,Σ), where h is the heap, k0, k are the region

numbers used in the small-step semantics, e is the control expression, E is the

runtime environment, S is a stack, and Σ is a function giving the code of every

defined Safe function. In Figure 4 we show the transitions of the abstract machine
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Initial/final configuration Condition Label

(h, k0, k, c, E, S, Σ) k > k0 [Lit1]

⇒ (h |k0 , k0, k0, c, E, S, Σ)

(h, k, k, c1, E1, (k0, x1, e, E) : S, Σ) [Lit2]

⇒ (h, k0, k, e, E ∪ [x1 �→ c1], S, Σ)

(h[p �→ (j, C bi
n
)], k0, k, x, E[x �→ p], S, Σ) k > k0 [Cons1]

⇒ (h |k0 , k0, k0, x, E, S, Σ)

(h[p �→ (j, C bi
n
)], k, k, x, E1[x �→ p], (k0, x1, e, E) : S, Σ) [Cons2]

⇒ (h, k0, k, e, E ∪ [x1 �→ p], S, Σ)

(h[p �→ (l, C bi
n
)], k0, k, x@r, E[x �→ p, r �→ j], S, Σ) (h′, q) = copy(h, p, j) [Copy ]

⇒ (h′, k0, k, y, E ∪ [y �→ q], S, Σ) j ≤ k, fresh(y)

(h � [p �→ w], k0, k, x!, E[x �→ p], S, Σ) fresh(q), fresh(y) [Reuse ]

⇒ (h � [q �→ w], k0, k, y, E ∪ [y �→ q], S, Σ)

(h, k0, k, f ai
n @ sj

m, E, S, Σ) (f xi
n @ rj

m = e) ∈ Σ [App]

⇒ (h, k0, k + 1, e, [xi �→ E(ai)
n
, rj �→ E(sj)

m
, self �→ k + 1], S, Σ)

(h, k0, k, let x1 = C ai
n@s in e, E, S, Σ) E(s) ≤ k [Let3]

⇒ (h � [p �→ (E(s), C E(ai)
n
)], k0, k, e, E � [x1 �→ p], S, Σ) fresh(p)

(h, k0, k, let x1 = e1 in e, E, S, Σ) [Let4]

⇒ (h, k, k, e1, E, (k0, x1, e, E) : S, Σ)

(h[p �→ (j, C bi
n
)], k0, k, case x of Ci xij

ni → ei, E[x �→ p], S, Σ) C = Cr [Case1]

⇒ (h, k0, k, er, E ∪ [xrj �→ bj
n
], S, Σ)

(h � [p �→ (j, C bi
n
)], k0, k, case! x of Ci xij

ni → ei, E[x �→ p], S, Σ) C = Cr [Case2]

⇒ (h, k0, k, er, E ∪ [xrj �→ bj
n
], S, Σ)

Fig. 4. The abstract machine SAFE-M2

SAFE-M2. The only new element w.r.t. the small-step semantics is the stack S. It

consists of continuation frames of the form (k0, x1, e, E) corresponding to pending

expressions e of a let whose auxiliary expression e1 is under evaluation. Region

k0 is where the normal form of e should be returned, x1 is the let-bound variable

free in e, and E is the environment in which e should be evaluated. Corresponding

to the inductive semantic rules of the Let4 group, the abstract machine rule Let4

pushes a continuation to the stack and proceeds with the evaluation of the auxiliary

expression e1. When the normal form of e1 is reached in rules Lit1 and Cons1, the

continuation is popped and the machine proceeds with the evaluation of the main

expression. We use a, ai, . . . to denote either program variables or basic constants.

Notice that the current environment is discarded in rules Lit2 and Cons2 when a

normal form is reached and a continuation must be popped from the stack. Also, it

is discarded in rule App when a function body is entered and the formal arguments

become the only variables in scope. In Section 7 this will have the important conse-

quence that tail recursion is translated so that only a constant stack space is needed.

Notice also in rule Let4 that the current environment is saved in the stack but it is
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not discarded from the control. One important aspect of the translation given in

Section 7 is that it manages to avoid this implicit duplication of environments.

The current environment is extended with new bindings in rules Let3, Case1 and

Case2 as soon as let-bound or case-bound variables become free variables in scope

in the continuation expression. Also, it is extended in rules Copy and Reuse with

a fresh program variable y. This is merely an artifact due to the fact that a fresh

data structure must be referenced in the control expression. Finally, in rules Lit2

and Cons2, the environment E saved in the continuation must be extended with

the new binding introduced by let.

6 The imperative abstract machine SVM

We first present our imperative machine and then, in Sec. 7, we will explain how to

map M2 to it. A configuration of the machine SVM (Safe Virtual Machine) consists

of the six components (is , h, k0, k, S, cs), where is is the current instruction

sequence, and cs is the code store where the instruction sequences resulting from

the compilation of program fragments are kept. Now, we will use p, q, . . . to denote

code pointers solved by cs, and b, bi, . . . to denote heap pointers or any other item

stored in the stack (constants, region numbers or continuations). In Figure 5 we

show the semantics of SVM instructions in terms of configuration transitions. By

Cm
r we denote the data constructor which is the r-th in its data definition out of

a total of m data constructors. By S!j we denote the j-th element of the stack S

counting from the top and starting at 0 (i.e. S!0 is the top element).

Instruction DECREGION deletes from the heap all the regions, if any, between

the current region k and region k0, excluding the latter. It will be used when a

normal form is reached.

Instruction POPCONT pops a continuation from the stack or stops the exe-

cution if there is none. Notice that b —which will usually be a value— is left in

the stack so that it can be accessed by the continuation. Instruction PUSHCONT

pushes a continuation. It will be used in the translation of a let.

Instructions COPY and REUSE just mimic the corresponding actions Copy and

Reuse of the abstract machine M2. Instruction CALL jumps to a new instruction

sequence and creates a new region. Instruction PRIMOP operates two basic values

located in the stack and replaces them by the result of the operation.

Instruction MATCH does a vectored jump depending on the constructor of the

matched closure. The vector of sequences pointed to by the pj corresponds to the

compilation of a set of case alternatives. Instruction MATCH ! additionally destroys

the matched cell.

Instruction BUILDENV receives a list of keys Ki and creates a portion of en-

vironment on top of the stack: If a key K is a natural number j, the item S!j is

copied and pushed on the stack; if it is a basic constant c, it is directly pushed on

the stack; if it is the identifier self , then the current region number k is pushed on

the stack. Instruction BUILDCLS allocates fresh memory and constructs a heap

value. As BUILDENV , it receives a list of keys and uses the same conventions. It
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Initial/final configuration Condition

(DECREGION : is , h, k0, k, S, cs) k ≥ k0

⇒ (is , h |k0 , k0, k0, S, cs)

([POPCONT ], h, k, k, b : (k0, p) : S, cs[p �→ is])

⇒ (is , h, k0, k, b : S, cs)

(PUSHCONT p : is, h, k0, k, S, cs [p �→ is ′])

⇒ (is , h, k, k, (k0, p) : S, cs)

(COPY : is, h[b �→ (l, C vi
n)], k0, k, b : j : S, cs) (h′, b′) = copy(h, b, j)

⇒ (is , h′, k0, k, b′ : S, cs) j ≤ k

(REUSE : is , h � [b �→ w], k0, k, b : S, cs) fresh(b′)

⇒ (is , h � [b′ �→ w], k0, k, b′ : S, cs)

([CALL p], h, k0, k, S, cs[p �→ is])

⇒ (is , h, k0, k + 1, S, cs)

(PRIMOP ⊕ : is , h, k0, k, c1 : c2 : S, cs) c = c1 ⊕ c2

⇒ (is , h, k0, k, c : S, cs)

([MATCH l pj
m], h[S!l �→ (j, Cm

r vi
n)], k0, k, S, cs [pj �→ isj

m
])

⇒ (isr, h, k0, k, bi
n
: S, cs)

([MATCH ! l pj
m], h � [S!l �→ (j, Cm

r vi
n)], k0, k, S, cs [pj �→ isj

m
])

⇒ (isr, h, k0, k, bi
n
: S, cs)

(BUILDENV Ki
n

: is, h, k0, k, S, cs)

⇒ (is , h, k0, k, Itemk(Ki)
n

: S, cs) (1)

(BUILDCLS Cm
r Ki

n
K : is, h, k0, k, S, cs) Itemk(K) ≤ k, fresh(b)

⇒ (is , h � [b �→ (Itemk(K), Cm
r Itemk(Ki)

n
)], k0, k, b : S, cs) (1)

(SLIDE m n : is, h, k0, k, bi
m

: b′i
n

: S, cs)

⇒ (is , h, k0, k, bi
m

: S, cs)

(1) Itemk(K)
def
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S!j if K = j ∈ N

c if K = c

k if K = self

Fig. 5. The abstract machine SVM

also receives the constructor Cm
r of the value.

Finally, instruction SLIDE removes some parts of the stack. It will be used to

remove environments when they are no longer needed.

7 Translation to imperative code

The main new idea of the translation is to split the runtime environment of the M2

machine into two environments: a compile-time environment ρ mapping program

variables to natural numbers, and the actual runtime environment mapping offsets

from the top of the stack to actual heap pointers, basic constants or region numbers.
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The ρ environment maps a variable to the position in the stack where its runtime

value resides. As the stack grows dynamically, a first idea is to assign numbers to

the variables from the bottom of the environment to the top. In this way, if the

environment occupies the top m positions of the stack and ρ[x �→ 1], then S!(m−1)

will contain the runtime value corresponding to x.

A second idea is to reuse the current environment when pushing a continuation

into the stack. In the M2 rule Let4, the environment E pushed into the stack is the

same as the environment in which the auxiliary expression e1 is evaluated. The aim

is to share the environment instead of duplicating it, and to push only the remaining

parameters in the continuation, i.e. the pair (k0, e) (the variable x1 will not in fact

be needed, but the compilation will ensure that a pointer to its value will be on top

of the stack when the continuation is popped). So, the whole environment ρ will

consist of a list of smaller environments [δ1, . . . , δn], each one except the first one δ1,

topped with a continuation. Each individual block i consists of a triple (δi, li, ni)

with the actual environment δi mapping variables to numbers in the range (1 . . . mi),

its length li = mi +ni, and an indicator ni whose value is 2 for all the blocks except

for the first one, whose value is n1 = 0. We are assuming that a continuation needs

two words in the stack and that the remaining items need one word.

The offset with respect to the top of the stack of a variable x defined in the

block k, denoted ρ x, is computed as follows: ρ x
def
=

∑k
i=1 li − δk x.

Only the top environment may be extended with new bindings. There are three

operations on compile-time environments:

(i) ((δ,m, 0) : ρ) + {xi �→ ji
n
}

def
= (δ ∪ {xi �→ m + ji

n
,m + n, 0) : ρ.

(ii) ((δ,m, 0) : ρ)++
def
= ({}, 0, 0) : (δ,m + 2, 2) : ρ.

(iii) topDepth ((δ,m, 0) : ρ)
def
= m. Undefined otherwise.

The first one extends the top environment with n new bindings, while the second

closes the top environment with a 2-indicator and then opens a new one.

Using these conventions, in Figure 6 we show the translation function trE taking

a Core-Safe expression and giving a list of SVM instructions and a code store. There,

NormalForm ρ is a compilation macro defined as follows:

NormalForm ρ
def
= SLIDE 1 (topDepth ρ);

DECREGION ;
POPCONT

Notice in function applications that the translation of the body is expected to be

found in the code store. This is denoted by highlighting address p.

7.1 Efficient tail recursion: an example

We show here a detailed example, a tail recursive version of the factorial function:

ifact n r = case n of

0 → r
→ let r′ = r ∗ n in (let n′ = n − 1 in ifact n′ r′);

ifact 3 1
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trE c ρ = BUILDENV [c];

NormalForm ρ

trE x ρ = BUILDENV [ρ x];

NormalForm ρ

trE (x@r) ρ = BUILDENV [ρ x, ρ r];

COPY ;

NormalForm ρ

trE (x!) ρ = BUILDENV [ρ x];

REUSE ;

NormalForm ρ

trE (a1 ⊕ a2) ρ = BUILDENV [ρ a1, ρ a2];

PRIMOP ;

NormalForm ρ

trE (f ai
n @ sj

m) ρ = BUILDENV [ρ ai
n, ρ sj

m];

SLIDE (n + m) (topDepth ρ);

CALL p

where (f xi
n @ rj

m = e) ∈ Σ

cs[p �→ trE e [({ rj �→ m − j + 1
m

, xi �→ n − i + m + 1
n
}, n + m, 0)]]

trE (let x1 = Cm
l ai

n@s in e) ρ = BUILDCLS Cm
l [(ρ ai)

n
] (ρ s);

trE e (ρ + {x1 �→ 1})

trE (let x1 = e1 in e) ρ = PUSHCONT p; & cs ∪ [p �→ trE e (ρ + {x1 �→ 1})]

trE e1 ρ++

trE (case x of alt i
n
) ρ = MATCH (ρ x) pi

n & cs ∪ [pi �→ trA alt i ρ
n
]

trE (case! x of alt i
n
) ρ = MATCH ! (ρ x) pi

n & cs ∪ [pi �→ trA alt i ρ
n
]

trA (C xi
n → e) ρ = trE e (ρ + {xi �→ n − i + 1

n
})

Fig. 6. Translation schemes from normalized Safe to SVM instructions

In Figure 7 we show both the corresponding imperative code and an outline of

executing ifact 3 1. We show, from top to bottom and from left to right, the state

of the stack after executing some of the instructions (written above the stack).

It is possible to visualize how tail recursion is efficiently done by means of the

SLIDE 2 4 instruction which discards the previous (already dead) environment. The

stack’s depth is the same at each recursive call (second, third and fourth columns).

8 Resource-aware semantics

Once the resource consumption of the SVM is known, we enrich the semantics

given in Sec. 3 with a resource vector (δ,m, s) obtained as a side effect of evaluating

an expression e. The first component is a partial function δ : N → Z giving for

each region k the signed difference between the cells in the final and initial heaps.

A positive difference means that new cells have been created in this region. A

negative one, means that some cells have been destroyed. By dom(δ) we denote the

subset of N in which δ is defined. By |δ| we mean the sum
∑

n∈dom(δ) δ(n) giving

the total balance of cells. The remaining components m and s respectively give

the minimum number of fresh cells in the heap and of words in the stack needed to

successfully evaluate e. When e is the main expression, these figures give us the total

memory needs of the Safe program. In Fig. 8, we show the enriched rules. Notice

the additional argument td needed to simulate the topDepth function of compile
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BUILDENV [Lit 3,Lit 1]

SLIDE 2 0

CALL ifact

ifact : MATCH 0 [P3, P4]

P3 : BUILDENV [Var 1]

SLIDE 1 2

DECREGION

POPCONT

P4 : PUSHCONT P5

BUILDENV [Var 2, Var 1]

PRIMOP *

SLIDE 1 0

POPCONT

P5 : PUSHCONT P6

BUILDENV [Var 2, Lit 1]

PRIMOP -

SLIDE 1 0

POPCONT

P6 : BUILDENV [Var 0, Var 1]

SLIDE 2 4

CALL ifact

P3

1r0

3n0

P4 + 1

1r0

3n0

1‖P5

3n

1r

P4 + 4

1r0

3n0

3r′

P5 + 1

1r0

3n0

3r′

1‖P6

1

3n

P6

1r0

3n0

3r′

2n′

3r′

2n′

P6 + 2

3r1

2n1

P5 + 1

3r1

2n1

6r′1

2‖P6

1

2n1

P6

3r1

2n1

6r′1

1n′

1

6r′1

1n′

1

P6 + 2

6r2

1n2

P5 + 1

6r2

1n2

6r′2

3‖P6

1

1n2

P6

6r2

1n2

6r′2

0n′

2

6r′2

0n′

2

P6 + 2

6r3

0n3

P3

6r3

0n3

6r

P3 + 2

6r

Fig. 7. Imperative code for ifact 3 1 and example of execution

time environments. By [ ] we denote the function λn.⊥ and by δ1 + δ2 the function:

(δ1 + δ2)(x) =

8><
>:

δ1(x) + δ2(x) if x ∈ dom(δ1) ∩ dom(δ2)

δi(x) if x ∈ dom(δi) − dom(δ3−i), i ∈ {1, 2}

⊥ otherwise

Function size in rule Var2 gives the size of the recursive spine of a data structure:

size(h[p 	→ (j, C vi
n)], p) = 1 +

X
i∈RecPos(C )

size(h, vi)

where RecPos returns the recursive parameter positions of a given constructor. In

rule App, by δ|k we mean a function like δ but undefined for values greater than

k. The computation max{n + l, s + n + l − td} of fresh stack words takes into

account that the first n + l words are needed to store the actual arguments, then

the current environment of length td is discarded, and then the function body is

evaluated. In rule Let1, a continuation (2 words) is stacked before evaluating e1,

and this a leaves a value in the stack before evaluating e2. Hence, the computation

max{2 + s1, 1 + s2}.

Now we show that the pair translation-abstract machine is sound and complete

with respect this semantics. First, we note that both the semantics and the SVM

machine rules are syntax driven, and that their computations are deterministic (up

to fresh names generation).

Definition 8.1 We say that the environment E and the pair (ρ, S) are equivalent,

denoted E ≡ (ρ, S), if dom E − {self } = dom ρ, and ∀x ∈ dom ρ . E(x) = S!(ρ x).
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E � h, k, td , c ⇓ h, k, c, ([ ], 0, 1) [Lit ]

E[x �→ v] � h, k, td , x ⇓ h, k, v, ([ ], 0, 1) [Var ]

j ≤ k (h′, p′) = copy(h, p, j) m = size(h, p)

E[x �→ p, r �→ j] � h, k, td , x@r ⇓ h′, k, p′, ([j �→ m],m, 2)
[Var2 ]

fresh(q)

E[x �→ p] � h � [p �→ w], k, td , x! ⇓ h � [q �→ w], k, q, ([ ], 0, 1)
[Var3 ]

(f xi
n @ rj

l = e) ∈ Σ [xi �→ E(ai)
n
, rj �→ E(r′j)

l
, self �→ k + 1] � h, k + 1, n + l, e ⇓ h′, k + 1, v, (δ,m, s)

E � h, k, td , f ai
n @ r′j

l
⇓ h′|k, k, v, (δ|k ,m,max{n + l, s + n + l − td})

[App]

E � h, k, 0, e1 ⇓ h′, k, v1, (δ1,m1, s1)

E ∪ [x1 �→ v1] � h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2,m2, s2)

E � h, k, td , let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2,max{m1, |δ1| + m2},max{2 + s1, 1 + s2})
[Let1 ]

j ≤ k fresh(p) E ∪ [x1 �→ p] � h � [p �→ (j, C vi
n)], k, td + 1, e2 ⇓ h′, k, v, (δ,m, s)

E[ai �→ vi
n, r �→ j] � h, k, td , let x1 = C ai

n@r in e2 ⇓ h′, k, v, (δ + [j �→ 1],m + 1, s + 1)
[Let2 ]

C = Cr E ∪ [xri
�→ vi

nr ] � h, k, td + nr, er ⇓ h′, k, v, (δ,m, s)

E[x �→ p] � h[p �→ (j, C vi
n)], k, td , case x of Ci xij

ni → ei
n
⇓ h′, k, v, (δ,m, s + nr)

[Case]

C = Cr E ∪ [xri
�→ vi

nr ] � h, k, td + nr, er ⇓ h′, k, v, (δ,m, s)

E[x �→ p] � h � [p �→ (j, C vi
n)], k, td , case! x of Ci xij

ni → ei
n
⇓ h′, k, v, (δ + [j �→ −1],max{0,m − 1}, s + nr)

[Case!]

Fig. 8. Resource-Aware Operational semantics of Safe expressions

Definition 8.2 Given c0 = (is, h, k0, k, S, cs) and S′ a suffix of S, we denote by

c0 →∗
S′ cn a derivation in which all the stacks in configurations ci are never smaller

than S′. Should the top instruction of a configuration create a smaller stack, then

the machine would stop at that configuration.

Definition 8.3 Given c0 = (is , h, k0, k, S, cs) and c0 →S′ · · · →S′ cn we call

the highest difference in cells between the heaps of the configurations c0, . . . cn

and the heap h the maximum number of fresh cells of the derivation, denoted

maxFreshCells(c0 →∗
S′ cn). Likewise, we could define the maximum number of

fresh words created in the stack S, denoted maxFreshWords (c0 →∗
S′ cn). Finally,

by diff k h h′ we denote a function giving for each region in {0, . . . , k} the signed

difference in cells between h′ and h.

Theorem 8.4 For all S, S′, E, h, h′, td , k0, k, e, v, δ,m, s, ρ, cs , cs ′, cs ′′ of their re-
spective types, if

E ≡ (ρ, S) (is, cs) = trE e ρ td = topDepth ρ

S′ = drop td S cs′′ = cs � cs′ k0 ≤ k

then E � h, k, td , e ⇓ h′, k, v, (δ,m, s) if and only if

c0 ≡ (is, h, k0, k, S, cs′′) →∗

S′
([POPCONT ], h′ |k0

, k0, k0, v : S′, cs′′) ≡ cn ∧

δ = diff k h h′ ∧ m = maxFreshCells(c0 →∗

S′
cn) ∧ s = maxFreshWords(c0 →∗

S′
cn)

Proof. By induction on the depth of the ⇓ derivation the (⇒) direction, and by

induction on the number of steps of →∗
S′ , the (⇐) direction (see [7] for a full proof).�
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9 Conclusions and related work

The motivation for this work has been to complete the implementation of Safe,

whose front-end has been presented in [11,10,9]. One contribution is, in our view, to

show a systematic method for refining operational semantics and abstract machines

in order to find the way from an abstract view of the language to an efficient

implementation. Another one, is presenting a semantics enriched with memory

costs and proving the correctness of these costs and of the whole translation of Safe

to imperative code. This semantics will be the basis for proving correct a memory

consumption static analysis which we are completing.

There have been other successful derivations of abstract machines starting from

high level descriptions of the semantics. For instance, in [4] and [1] a number of

such derivations are done. Well known abstract machines for the λ-calculus such

as SECD, Krivine’s, CLS and CAM are derived and proved correct. These papers

propose general schemes for achieving this kind of derivations. The differences with

the present work are the following:

• They concentrate on the pure λ-calculus and they consider neither sharing nor

heaps. Algebraic types, case and let expressions are not considered either.

• In the second paper, the starting point is a denotational meaning of the source

language, while here we start from an operational semantics.

• In order to refine their machines they use predefined correct transformations such

as closure conversion, transformation into continuation passing style, defunction-

alization and inlining.

• They ignore the compilation issues from the source language to machine instruc-

tions, and also resource consumption.

In [5] a broad survey of both abstract and virtual machines for the λ-calculus

and for practical functional languages is done. The author presents in detail some

well-known and other less known abstract machines. When the machines execute

compiled code, also the translation schemes are provided. The aim of the book is

to serve as a text for a graduate course and no attempt is done to provide proofs of

correctness either of the machines or of the compilation schemes.

For the first abstract machine M2 we have found inspiration in Sestoft’s deriva-

tion of abstract machines for a lazy λ-calculus [12]. For the rest of the derivation,

the authors have reported some previous experience in [3], but in that occasion the

destination machine was known in advance. The present work represents a ’real’

derivation in the sense that the destination machine has been invented from scratch.

For the semantics enriched with a resource vector, we have found inspiration in [2].

Compared to other eager machines such as Landin’s SECD machine [6], it is an

added value of our abstract machine that the standard translation yields constant

stack space for tail recursion, as we have shown in the example of Section 7.1. For

instance, in the G-machine the compiler needs to explicitly identify tail recursion

and to do a special translation in this case, i.e. it is considered as an optimization of

the code generation phase. The same happens in other compiled virtual machines
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such as π-RED.

Additionally, our SVM machine does not need a garbage collector and all mem-

ory allocation/deallocation actions have been implemented in constant time.
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