
Patterns

Vincent van Oostrom & Luigi Liquori

http://cl-informatik.uibk.ac.at

http://cl-informatik.uibk.ac.at

1. Motivation

2. Design space/decisions

3. Some λ-calculi with patterns

4. Patterns in Haskell

Madrid (Virtual); ISR 2021 10–07–2021 0

Motivation

Conceptual

I λ-calculus: parameter passing rule β : (λx.M)N → M[x := N]

(λx y.x + y) 0 3 → (λy.0 + y) 3 → 0 + 3

I term rewriting: pattern matching rules `→ r (pattern `) such as 0 + x → x

0 + 3 → 3

I λ-calculi with patterns combine parameter passing with pattern matching

(λ[x, y].x) [1,2,3,4,5] → 1 and (λ[x, y].y) [1,2,3,4,5] → [2,3,4,5]

Haskell-like list [1,2,3,4,5] abbreviates [1, [2, [3, [4, [5]]]]]; repeated cons

Madrid (Virtual); ISR 2021 10–07–2021 1

Motivation

Conceptual

I λ-calculus: parameter passing rule β : (λx.M)N → M[x := N]

(λx y.x + y) 0 3 → (λy.0 + y) 3 → 0 + 3

I term rewriting: pattern matching rules `→ r (pattern `) such as 0 + x → x

0 + 3 → 3

I λ-calculi with patterns combine parameter passing with pattern matching

(λ[x, y].x) [1,2,3,4,5] → 1 and (λ[x, y].y) [1,2,3,4,5] → [2,3,4,5]

Haskell-like list [1,2,3,4,5] abbreviates [1, [2, [3, [4, [5]]]]]; repeated cons

Madrid (Virtual); ISR 2021 10–07–2021 1

Motivation

Conceptual

I λ-calculus: parameter passing rule β : (λx.M)N → M[x := N]

(λx y.x + y) 0 3 → (λy.0 + y) 3 → 0 + 3

I term rewriting: pattern matching rules `→ r (pattern `) such as 0 + x → x

0 + 3 → 3

I λ-calculi with patterns combine parameter passing with pattern matching

(λ[x, y].x) [1,2,3,4,5] → 1 and (λ[x, y].y) [1,2,3,4,5] → [2,3,4,5]

Haskell-like list [1,2,3,4,5] abbreviates [1, [2, [3, [4, [5]]]]]; repeated cons

Madrid (Virtual); ISR 2021 10–07–2021 1

Motivation

Conceptual

I λ-calculus: parameter passing rule β : (λx.M)N → M[x := N]

(λx y.x + y) 0 3 → (λy.0 + y) 3 → 0 + 3

I term rewriting: pattern matching rules `→ r (pattern `) such as 0 + x → x

0 + 3 → 3

I λ-calculi with patterns combine parameter passing with pattern matching

(λ[x, y].x) [1,2,3,4,5] → 1 and (λ[x, y].y) [1,2,3,4,5] → [2,3,4,5]

Haskell-like list [1,2,3,4,5] abbreviates [1, [2, [3, [4, [5]]]]]; repeated cons
convenient for writing projection functions like head and tail

Madrid (Virtual); ISR 2021 10–07–2021 1

Motivation

Conceptual

I λ-calculus: parameter passing rule β : (λx.M)N → M[x := N]

(λx y.x + y) 0 3 → (λy.0 + y) 3 → 0 + 3

I term rewriting: pattern matching rules `→ r (pattern `) such as 0 + x → x

0 + 3 → 3

I λ-calculi with patterns combine parameter passing with pattern matching

(λ[x, y].x) [1,2,3,4,5] → 1 and (λ[x, y].y) [1,2,3,4,5] → [2,3,4,5]

Haskell-like list [1,2,3,4,5] abbreviates [1, [2, [3, [4, [5]]]]]; repeated cons
convenient for writing projection functions like head and tail

in math common practice to write (x, y) 7→ x + y for addition function on pairs
a pair (x, y) is already a rudimentary form of a pattern

Madrid (Virtual); ISR 2021 10–07–2021 1

Motivation

Conceptual

I λ-calculus: parameter passing rule β : (λx.M)N → M[x := N]

(λx y.x + y) 0 3 → (λy.0 + y) 3 → 0 + 3

I term rewriting: pattern matching rules `→ r (pattern `) such as 0 + x → x

0 + 3 → 3

I λ-calculi with patterns combine parameter passing with pattern matching

(λ[x, y].x) [1,2,3,4,5] → 1 and (λ[x, y].y) [1,2,3,4,5] → [2,3,4,5]

Haskell-like list [1,2,3,4,5] abbreviates [1, [2, [3, [4, [5]]]]]; repeated cons
convenient for writing projection functions like head and tail

This lecture

Trying to make sense of this idea, of λ-calculi with patterns

Madrid (Virtual); ISR 2021 10–07–2021 1

Motivation

Personal (1990)

Klop (PhD supervisor) to Vincent (PhD student): the enriched λ-calculus in the
recent book [SPJ] sounds interesting, could you study its rewrite properties?

Madrid (Virtual); ISR 2021 10–07–2021 2

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf
https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

How to implement functional programming languages?

Idea of [SPJ]: transformational

FPL =⇒ enriched λ-calculus (Chapter 4) =⇒ λ-calculus (with []; Chapter 6)

Miranda

λ-calculus

enriched λ-calculus

Madrid (Virtual); ISR 2021 10–07–2021 3

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

How to implement functional programming languages?

Idea of [SPJ]: transformational

FPL =⇒ λ-calculus with patterns (Chapter 4) =⇒ λ-calculus (with []; Chapter 6)

Miranda

λ-calculus

λ-calculus with patterns

Madrid (Virtual); ISR 2021 10–07–2021 3

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Pattern reduction in a picture [KvOdV]

Idea

if argument is a substitution σ (x 7→ X, z 7→ Z, y 7→ Y) instance Nσ of the pattern
(P = N), then contractum Mσ is substitution instance of body M

Madrid (Virtual); ISR 2021 10–07–2021 4

https://doi.org/10.1016/j.tcs.2008.01.019

Design space

The three stages of reduction (for rule 0 + x → x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

step 0 + 3 → 3
30 + 3

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule 0 + x → x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

0 + 3
step 0 + 3 → 3

pattern matching

(λx.0 + x)3

3

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r (closure: ∀~x.(`→ r) =⇒ (λ~x.`) → (λ~x.r); Frege)

3 substitution: substituting the parameters into rhs r

0 + 3

rule λx.0 + x → λx.x

step 0 + 3 → 3

pattern matching

(λx.0 + x)3 (λx.x)3

3

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

0 + 3

rule λx.0 + x → λx.x

step 0 + 3 → 3

pattern matching substitution

(λx.0 + x)3 (λx.x)3

3

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

0 + 3

rule λx.0 + x → λx.x

step 0 + 3 → 3

pattern matching substitution

(λx.0 + x)3 (λx.x)3

3

analogy = generalisation + specialisation (Pólya’s 4)

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

0 + 3

rule λx.0 + x → λx.x

step 0 + 3 → 3

pattern matching substitution

(λx.0 + x)3 (λx.x)3

3

substitution calculus (λαβη→) = matching + substitution (van Raamsdonk, vO)

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

λ-calculi with patterns design space

I represent partial functions (λ) or anything goes (TRS)?

I matching and/or substitution explicit (e.g. nominal, explicit α) or implicit

I matching and/or substitution syntactic (unitary) or modulo theory (e.g. AC)

I how to handle match failures? (wait? error if stably fails?)

I untyped or typed, fixed or arbitrary signature, . . .

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

λ-calculi with patterns design space

I represent partial functions (λ) or anything goes (TRS)?

I matching and/or substitution explicit (e.g. nominal, explicit α) or implicit

I matching and/or substitution syntactic (unitary) or modulo theory (e.g. AC)

I how to handle match failures? (wait? error if stably fails?)

I untyped or typed, fixed or arbitrary signature, . . .

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

λ-calculi with patterns design space

I represent partial functions (λ) or anything goes (TRS)?

I matching and/or substitution explicit (e.g. nominal, explicit α) or implicit

I matching and/or substitution syntactic (unitary) or modulo theory (e.g. AC)

I how to handle match failures? (wait? error if stably fails?)

I untyped or typed, fixed or arbitrary signature, . . .

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

λ-calculi with patterns design space

I represent partial functions (λ) or anything goes (TRS)?

I matching and/or substitution explicit (e.g. nominal, explicit α) or implicit

I matching and/or substitution syntactic (unitary) or modulo theory (e.g. AC)

I how to handle match failures? (wait? error if stably fails?)

I untyped or typed, fixed or arbitrary signature, . . .

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design space

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

λ-calculi with patterns design space

I represent partial functions (λ) or anything goes (TRS)?

I matching and/or substitution explicit (e.g. nominal, explicit α) or implicit

I matching and/or substitution syntactic (unitary) or modulo theory (e.g. AC)

I how to handle match failures? (wait? error if stably fails?)

I untyped or typed, fixed or arbitrary signature, . . .

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design decisions

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

λ-calculi with patterns design space

I represent partial functions (λ) or anything goes (TRS)?

I matching and/or substitution explicit (e.g. nominal, explicit α) or implicit

I matching and/or substitution syntactic (unitary) or modulo theory (e.g. AC)

I how to handle match failures? (wait? error if stably fails?)

I untyped or typed, fixed or arbitrary signature, . . .

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

Design

The three stages of reduction (for rule λx.0 + x → λx.x)

1 matching: matching and abstracting lhs ` of rule `→ r

2 replacement: replace ` by r

3 substitution: substituting the parameters into rhs r

This lecture/hour

I represent (partial) functions

I implicit, syntactic matching and substitution (possibly higher-order)

I first just wait then with errors

I untyped and both arbitrary (λC and CRS/HRS) and fixed signatures (λRPC)

Madrid (Virtual); ISR 2021 10–07–2021 5

λ-calculi with patterns of [KvOdV]

Lattice of λ-calculi with patterns

WOCRS: weakly ortho 2nd order TRS
OCRS: orthogonal 2nd/higher order TRS
λRPC : λP with rigid pattern condition
λP + OTRS: λP + orthogonal TRS
λP: λ+ pure patterns
λC + OTRS: λC + orthogonal TRS
λC: λ+ constructor patterns
λ: ordinary λβ-calculus

Madrid (Virtual); ISR 2021 10–07–2021 6

https://doi.org/10.1016/j.tcs.2008.01.019

λ-calculi with patterns of [KvOdV]

Lattice of λ-calculi with patterns

WOCRS: weakly ortho 2nd order TRS
OCRS: orthogonal 2nd/higher order TRS
λRPC : λP with rigid pattern condition
λP + OTRS: λP + orthogonal TRS
λP: λ+ pure patterns
λC + OTRS: λC + orthogonal TRS
λC: λ+ constructor patterns
λ: ordinary λβ-calculus

Madrid (Virtual); ISR 2021 10–07–2021 6

https://doi.org/10.1016/j.tcs.2008.01.019

λC, λ-calculus with constructor patterns (wait)

Idea

terms over an arbitrary first-order signature of constructor symbols as patterns

(Dis)advantages

I compared to λ-calculus: express (free) data types without coding

I compared to TRS: anonymous functions on data-types (see example)

Madrid (Virtual); ISR 2021 10–07–2021 7

λC, λ-calculus with constructor patterns (wait)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M | M M | c(~Mn)

(λP.M)Pσ → Mσ vars in P bound in M in λP.M

(Dis)advantages

I compared to λ-calculus: express (free) data types without coding

I compared to TRS: anonymous functions on data-types (see example)

Madrid (Virtual); ISR 2021 10–07–2021 7

λC, λ-calculus with constructor patterns (wait)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M | M M | c(~Mn)

(λP.M)Pσ → Mσ vars in P bound in M in λP.M

Example (Simple list projection functions for C = {CONS/2,A/0})

λCONS(x, y).x

λCONS(x, y).y

(λCONS(x, y).y) CONS(A, z) → z

(Dis)advantages

I compared to λ-calculus: express (free) data types without coding

I compared to TRS: anonymous functions on data-types (see example)

Madrid (Virtual); ISR 2021 10–07–2021 7

λC, λ-calculus with constructor patterns (wait)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M | M M | c(~Mn)

(λP.M)Pσ → Mσ vars in P bound in M in λP.M

(Dis)advantages

I compared to λ-calculus: express (free) data types without coding

I compared to TRS: anonymous functions on data-types (see example)

Madrid (Virtual); ISR 2021 10–07–2021 7

λC, λ-calculus with constructor patterns (wait)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M | M M | c(~Mn)

(λP.M)Pσ → Mσ vars in P bound in M in λP.M

(Dis)advantages

I compared to λ-calculus: express (free) data types without coding

I compared to TRS: anonymous functions on data-types (see example)

Madrid (Virtual); ISR 2021 10–07–2021 7

Non-linearity breaks representing partial functions

Example (Klop’s non-overlapping but non-confluent TRS {P/2,E/0})

D = λP(x, x).E

C = Θλcx.D P(x, c x)

A = Θ C

Θ is Turing’s fixed point combinator: Θ M� M (Θ M) for any term M

Comment on non-joinability of E and C E

if C E and E were joinable =⇒ C E� E =⇒ C E� D P(E,C E)� E

Madrid (Virtual); ISR 2021 10–07–2021 8

Non-linearity breaks representing partial functions

Example (Klop’s non-overlapping but non-confluent TRS {P/2,E/0})

D = λP(x, x).E

C = Θλcx.D P(x, c x)

A = Θ C

Remark (Imitating Turing (Klop))

How to build your own fixed-point combinator in three easy steps:

I assume your fpc has repetitive shape A A for some A
(idea: left A is the actor, right A is the passor)

I assume fp-behaviour is exhibited by expansion A A M� M (A A M)

I conclude may set A = λam.m (a a m). Indeed Θ = AA.

Comment on non-joinability of E and C E

if C E and E were joinable =⇒ C E� E =⇒ C E� D P(E,C E)� E

Madrid (Virtual); ISR 2021 10–07–2021 8

Non-linearity breaks representing partial functions

Example (Klop’s non-overlapping but non-confluent TRS {P/2,E/0})

D = λP(x, x).E

C = Θλcx.D P(x, c x)

A = Θ C

Remark (Imitating Turing (Klop))

How to build your own fixed-point combinator in three easy steps:

I assume your fpc has repetitive shape A A for some A
(idea: left A is the actor, right A is the passor)

I assume fp-behaviour is exhibited by expansion A A M� M (A A M)

I conclude may set A = λam.m (a a m). Indeed Θ = AA.

Comment on non-joinability of E and C E

if C E and E were joinable =⇒ C E� E =⇒ C E� D P(E,C E)� E

Madrid (Virtual); ISR 2021 10–07–2021 8

Non-linearity breaks representing partial functions

Example (Klop’s non-overlapping but non-confluent TRS {P/2,E/0})

D = λP(x, x).E

C = Θλcx.D P(x, c x)

A = Θ C

Remark (Imitating Turing (Klop))

How to build your own fixed-point combinator in three easy steps:

I assume your fpc has repetitive shape A A for some A
(idea: left A is the actor, right A is the passor)

I assume fp-behaviour is exhibited by expansion A A M� M (A A M)

I conclude may set A = λam.m (a a m). Indeed Θ = AA.

Comment on non-joinability of E and C E

if C E and E were joinable =⇒ C E� E =⇒ C E� D P(E,C E)� E

Madrid (Virtual); ISR 2021 10–07–2021 8

Non-linearity breaks representing partial functions

Example (Klop’s non-overlapping but non-confluent TRS {P/2,E/0})

D = λP(x, x).E

C = Θλcx.D P(x, c x)

A = Θ C

Comment on non-joinability of E and C E

if C E and E were joinable =⇒ C E� E =⇒ C E� D P(E,C E)� E

Madrid (Virtual); ISR 2021 10–07–2021 8

Non-linearity breaks representing partial functions

Example (Klop’s non-overlapping but non-confluent TRS {P/2,E/0})

D = λP(x, x).E

C = Θλcx.D P(x, c x)

A = Θ C

Comment on non-joinability of E and C E

if C E and E were joinable =⇒ C E� E =⇒ C E� D P(E,C E)� E

Madrid (Virtual); ISR 2021 10–07–2021 8

Non-linear non-overlapping TRSs not representable

Example (Huet’s non-overlapping but non-confluent TRS)

∞ → S(∞)

E(x, x) → true

E(x,S(x)) → false

Comment on non-definability in λC

true and false are distinct normal forms, but λC has the unique normal form
property (also if non-linear patterns are allowed).

Madrid (Virtual); ISR 2021 10–07–2021 9

Non-linear non-overlapping TRSs not representable

Example (Huet’s non-overlapping but non-confluent TRS)

∞ → S(∞)

E(x, x) → true

E(x,S(x)) → false

Comment on non-definability in λC

true and false are distinct normal forms, but λC has the unique normal form
property (also if non-linear patterns are allowed).

Madrid (Virtual); ISR 2021 10–07–2021 9

Some λC rewriting meta-theory

Theorem (Linear λC represents partial functions)

λC is confluent if patterns are required to be linear

Theorem

λC has the unique normal form property

Example (of waiting and its solution [SPJ])

for NIL/0 a nullary constant, the term (λCONS(x, y).y) NIL is stuck; it waits until
the NIL-argument matches the CONS-pattern which will never happen. this can
be observed in λC because constructors are distinct =⇒ adjoin case construct

Madrid (Virtual); ISR 2021 10–07–2021 10

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Some λC rewriting meta-theory

Theorem (Linear λC represents partial functions)

λC is confluent if patterns are required to be linear

Proof.

boring/wasteful: adapting the Tait–Martin-Löf proof

Theorem

λC has the unique normal form property

Example (of waiting and its solution [SPJ])

for NIL/0 a nullary constant, the term (λCONS(x, y).y) NIL is stuck; it waits until
the NIL-argument matches the CONS-pattern which will never happen. this can
be observed in λC because constructors are distinct =⇒ adjoin case construct

Madrid (Virtual); ISR 2021 10–07–2021 10

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Some λC rewriting meta-theory

Theorem (Linear λC represents partial functions)

λC is confluent if patterns are required to be linear

Proof.

better/reuse: linear λC embeds into orthogonal HRS (use Nipkow)

Theorem

λC has the unique normal form property

Example (of waiting and its solution [SPJ])

for NIL/0 a nullary constant, the term (λCONS(x, y).y) NIL is stuck; it waits until
the NIL-argument matches the CONS-pattern which will never happen. this can
be observed in λC because constructors are distinct =⇒ adjoin case construct

Madrid (Virtual); ISR 2021 10–07–2021 10

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Some λC rewriting meta-theory

Theorem (Linear λC represents partial functions)

λC is confluent if patterns are required to be linear

Theorem

λC has the unique normal form property
(normal forms N1,N2 are convertible N1 ↔∗ N2 =⇒ N1 = N2 the same)

Example (of waiting and its solution [SPJ])

for NIL/0 a nullary constant, the term (λCONS(x, y).y) NIL is stuck; it waits until
the NIL-argument matches the CONS-pattern which will never happen. this can
be observed in λC because constructors are distinct =⇒ adjoin case construct

Madrid (Virtual); ISR 2021 10–07–2021 10

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Some λC rewriting meta-theory

Theorem (Linear λC represents partial functions)

λC is confluent if patterns are required to be linear

Theorem

λC has the unique normal form property

Proof.

boring/wasteful: adapting de Vrijer’s proof

Example (of waiting and its solution [SPJ])

for NIL/0 a nullary constant, the term (λCONS(x, y).y) NIL is stuck; it waits until
the NIL-argument matches the CONS-pattern which will never happen. this can
be observed in λC because constructors are distinct =⇒ adjoin case construct

Madrid (Virtual); ISR 2021 10–07–2021 10

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Some λC rewriting meta-theory

Theorem (Linear λC represents partial functions)

λC is confluent if patterns are required to be linear

Theorem

λC has the unique normal form property

Proof.

better/reuse: λC embeds in strongly non-overlapping HRS (Mano,Ogawa) idea:
N1,N2 minimal distinct normal forms with N1 ↔∗ N2 =⇒
conditional linearizations (cl; de Vrijer) N∗1,N

∗
2 are cl-convertible =⇒

these are cl-joinable =⇒
one of N∗1,N

∗
2 is cl-reducible =⇒

one of them has distinct convertible normal forms as subterms. contradiction

Example (of waiting and its solution [SPJ])

for NIL/0 a nullary constant, the term (λCONS(x, y).y) NIL is stuck; it waits until
the NIL-argument matches the CONS-pattern which will never happen. this can
be observed in λC because constructors are distinct =⇒ adjoin case construct

Madrid (Virtual); ISR 2021 10–07–2021 10

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Some λC rewriting meta-theory

Theorem (Linear λC represents partial functions)

λC is confluent if patterns are required to be linear

Theorem

λC has the unique normal form property

Example (of waiting and its solution [SPJ])

for NIL/0 a nullary constant, the term (λCONS(x, y).y) NIL is stuck; it waits until
the NIL-argument matches the CONS-pattern which will never happen. this can
be observed in λC because constructors are distinct =⇒ adjoin case construct

Madrid (Virtual); ISR 2021 10–07–2021 10

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

λC, λ-calculus with constructor patterns (case)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M [] . . . [] P.M | M M | c(~Mn)

(λP1.M1 [] . . . [] Pn.Mn)Pσ
i → Mσ

i

Theorem (Representing partial functions in λC with cases)

λC is confluent if patterns are required to be linear and pairwise non-unifiable

Remark

can be extended with error rule in case argument is instance of (linear) pattern
not unifiable with case-patterns. [SPJ]/Haskell use [] for sequential matching.

Madrid (Virtual); ISR 2021 10–07–2021 11

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

λC, λ-calculus with constructor patterns (case)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M [] . . . [] P.M | M M | c(~Mn)

(λP1.M1 [] . . . [] Pn.Mn)Pσ
i → Mσ

i

Example (Simple list projection functions for C = {CONS/2,A/0,NIL/0})

(λCONS(x, y).y [] NIL.A) NIL → A

Theorem (Representing partial functions in λC with cases)

λC is confluent if patterns are required to be linear and pairwise non-unifiable

Remark

can be extended with error rule in case argument is instance of (linear) pattern
not unifiable with case-patterns. [SPJ]/Haskell use [] for sequential matching.

Madrid (Virtual); ISR 2021 10–07–2021 11

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

λC, λ-calculus with constructor patterns (case)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M [] . . . [] P.M | M M | c(~Mn)

(λP1.M1 [] . . . [] Pn.Mn)Pσ
i → Mσ

i

Example (Non-ortho patterns do not represent partial functions)

∞ = Θλi.S(i)

E = λP(x, x).true [] P(x,S(x)).false

N = (λA.false [] A.true) A

∞ and E represent Huet’s non-linear example; N has overlapping patterns

Theorem (Representing partial functions in λC with cases)

λC is confluent if patterns are required to be linear and pairwise non-unifiable

Remark

can be extended with error rule in case argument is instance of (linear) pattern
not unifiable with case-patterns. [SPJ]/Haskell use [] for sequential matching.

Madrid (Virtual); ISR 2021 10–07–2021 11

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

λC, λ-calculus with constructor patterns (case)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M [] . . . [] P.M | M M | c(~Mn)

(λP1.M1 [] . . . [] Pn.Mn)Pσ
i → Mσ

i

Theorem (Representing partial functions in λC with cases)

λC is confluent if patterns are required to be linear and pairwise non-unifiable

Remark

can be extended with error rule in case argument is instance of (linear) pattern
not unifiable with case-patterns. [SPJ]/Haskell use [] for sequential matching.

Madrid (Virtual); ISR 2021 10–07–2021 11

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

λC, λ-calculus with constructor patterns (case)

Definition (λC for C arbitrary first-order signature)

P ::= x | c(~Pn) x a variable, c ∈ C and n-ary

M ::= P | λP.M [] . . . [] P.M | M M | c(~Mn)

(λP1.M1 [] . . . [] Pn.Mn)Pσ
i → Mσ

i

Theorem (Representing partial functions in λC with cases)

λC is confluent if patterns are required to be linear and pairwise non-unifiable

Remark

can be extended with error rule in case argument is instance of (linear) pattern
not unifiable with case-patterns. [SPJ]/Haskell use [] for sequential matching.

Madrid (Virtual); ISR 2021 10–07–2021 11

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Gustave’s TRS

Exercise

TRS with signature {G/3,>/0,⊥/0,1/0,2/0,3/0} and three rules
G(>,⊥, x) → 1 G(⊥, x,>) → 2 G(x,>,⊥) → 3

and let Ω = (λx.x x) (λx.x x) as usual

I is the TRS orthogonal (left-linear and non-overlapping/lhss pairwise
non-unifiable)?

I give a λC-expression D, where all symbols in the above signature are now
constructors, that exhibits the behaviour as specified, i.e. D G(>,⊥,Ω)� 1,
D G(⊥,Ω,>)� 2, and D G(Ω,>,⊥)� 3

I can you express this in Haskell (thinking of >,⊥ as booleans, say)
(for 2nd part but you can think about it already)

Madrid (Virtual); ISR 2021 10–07–2021 12

λRPC

Idea

have λ-terms themselves as patterns
no extension of signature; minimal calculus in spirit of beginning of 20th century

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Example (Simple list projection function in λRPC)

(λ(λz.z x y).x)λz.z M N → M

(λ(λz.z x y).y)λz.z M N → N

λz.z M N is standard representation of a pair (M,N) in untyped λ-calculus

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Example (Problematic unstability)

I if variable is erased variables may be freed: λ(λx.y)z.z → λy.z??

I applicative patterns give rise to inconsistency: (λ(x y).x) I (K z) reduces in
one step to I and in two steps to K?? for I = λx.x and K = λx.λy.x as usual

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Example (Problematic unstability)

I if variable is erased variables may be freed: λ(λx.y)z.z → λy.z??

I applicative patterns give rise to inconsistency: (λ(x y).x) I (K z) reduces in
one step to I and in two steps to K?? for I = λx.x and K = λx.λy.x as usual

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

simple list projection functions in λRPC

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

λRPC

Definition (Provisional minimal syntax (λP))

M, P ::= x | λP.M | M M x a variable; free vars of P bound in M in λP.M

(λP.M)Pσ → Mσ

Definition (Restricting patterns P)

λRPC restricts patterns in abstractions to RPC comprising ordinary λ-terms that

I are linear; (free) variables occur at most once

I are in normal form; contain no β-redex

I have no active variables; no subterms of the form x M with x free

Theorem

λRPC is confluent

Madrid (Virtual); ISR 2021 10–07–2021 13

The case for higher-order term rewriting; CRSs/HRSs

Solution for ?

combinatory Logic (Schönfinkel) : first-order term rewrite systems

=

λ-calculus (Church) : ?

Desiderata

I closed under change of alphabet (CL,λ-calculi never are)

I rules having object variables (CL,λ-calculi typically rule schemata)

I object level substitution,matching and critical pairs (CL,λ-calculi never have)

Madrid (Virtual); ISR 2021 10–07–2021 14

The case for higher-order term rewriting; CRSs/HRSs

Solution for ?

combinatory Logic (Schönfinkel) : first-order term rewrite systems

=

λ-calculus (Church) : ?

Desiderata

I closed under change of alphabet (CL,λ-calculi never are)

I rules having object variables (CL,λ-calculi typically rule schemata)

I object level substitution,matching and critical pairs (CL,λ-calculi never have)

Madrid (Virtual); ISR 2021 10–07–2021 14

The case for higher-order term rewriting; CRSs/HRSs

Solution for ?

combinatory Logic (Schönfinkel) : first-order term rewrite systems

=

λ-calculus (Church) : ?

Desiderata

I closed under change of alphabet (CL,λ-calculi never are)

I rules having object variables (CL,λ-calculi typically rule schemata)

I object level substitution,matching and critical pairs (CL,λ-calculi never have)

Madrid (Virtual); ISR 2021 10–07–2021 14

The case for higher-order term rewriting; CRSs/HRSs

Solution for ?

combinatory Logic (Schönfinkel) : first-order term rewrite systems

=

λ-calculus (Church) : ?

Desiderata

I closed under change of alphabet (CL,λ-calculi never are)

I rules having object variables (CL,λ-calculi typically rule schemata)

I object level substitution,matching and critical pairs (CL,λ-calculi never have)

Madrid (Virtual); ISR 2021 10–07–2021 14

The case for higher-order term rewriting; CRSs/HRSs

Universal algebra approach to CL,λ-calculus

combinatory Logic (Schönfinkel) : first-order term rewrite systems

=

λ-calculus (Church) : higher-order term rewrite systems

Desiderata

I closed under change of alphabet (CL,λ-calculi never are)

I rules having object variables (CL,λ-calculi typically rule schemata)

I object level substitution,matching and critical pairs (CL,λ-calculi never have)

Madrid (Virtual); ISR 2021 10–07–2021 14

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet: RULE

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

(λ [x, y].x) [1,2,3,4,5] =⇒ λRULE([x, y], x) [1,2,3,4,5]

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet: RULE

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `: use HRS binder λ

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

(λ [x, y].x) [1,2,3,4,5] =⇒ λx y.RULE([x, y], x) [1,2,3,4,5]

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet: RULE

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `: use HRS binder λ

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet: @

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

(λ [x, y].x) [1,2,3,4,5] =⇒ @(λx y.RULE([x, y], x), [1,2,3,4,5])

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet: RULE

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `: use HRS binder λ

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet: @

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

@(λx y.RULE([x, y], x), [1,2,3,4,5])

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet: RULE

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `: use HRS binder λ

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet: @

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

@(λx y.RULE([x, y], x), [1,2,3,4,5])

@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet: RULE

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `: use HRS binder λ

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet: @

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

@(λx y.RULE([x, y], x), [1,2,3,4,5])
@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding λ-calculi with patterns into HRSs

Idea

1 term rewrite rule λ`.r (`→ r) is just a pair of terms =⇒
introduce a binary symbol for pairing into alphabet: RULE

2 variables in λ`.r implicitly universally quantified =⇒
explicitly abstract free variables in `: use HRS binder λ

3 application (λ`.r) to some argument t =⇒
introduce a binary symbol for application into alphabet: @

4 one rewrite rule per ` pattern: @(λ~x.RULE(`, F(~x)), `(~X)) → F(~X)

Example

@(λx y.RULE([x, y], x), [1,2,3,4,5]) → 1 (with F = λab.a, X = 1, Y = [2,3,4,5])
@(λx y.RULE([x, y], F(x, y)), [X, Y]) → F(X, Y)

Madrid (Virtual); ISR 2021 10–07–2021 15

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

adapt? meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO)

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

instantiate! meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO)

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

instantiate meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO)

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

instantiate meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO)

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

instantiate meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO)

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

instantiate meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO)

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

instantiate meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO)

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Corollary

instantiate meta-theory of (weakly) orthogonal higher/2nd order TRSs:

I confluence (Nipkow,Klop,van Raamsdonk,vO)

I matching/unification (Nipkow)

I semantics/universal algebra (Hamana,Fiore)

I termination methods (Jouannaud, Rubio, Kop, van Raamsdonk, Blanqui)

I standardisation, developments, residuation (Klop,Bruggink,vO) . . .

HRSs may capture stages of transformation from FPL into assembly (CRSX, Rose)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)

perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Embedding yields orthogonal HRS

Theorem

translation yields a (potentially infinite,weakly) orthogonal HRS
(if patterns in λC or λRPC are restricted to linear ones)

Remark (Personal)

embedding reason to focus on higher-order TRSs after [IR-228] (1990)
perspective: how do novel features of λ-calculi with patterns embed?

I typed patterns =⇒ sub-HRS induced by inference system (see slides LL)

I ρ-calculus (Kirchner et al.) =⇒ explicit manipulation of rules themselves

I pure patterns (Jay,Kesner) =⇒ handling names (with F van Raamsdonk)

I . . .

but always from a higher-order perspective

Madrid (Virtual); ISR 2021 10–07–2021 16

http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/IR-228.pdf

Recall implementing functional languages in [SPJ]

Idea of [SPJ]: transformational

FPL =⇒ enriched λ-calculus (Chapter 4) =⇒ λ-calculus (with []; Chapter 6)

Miranda

λ-calculus

enriched λ-calculus

Madrid (Virtual); ISR 2021 10–07–2021 17

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf
https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Recall implementing functional languages in [SPJ]

Idea of [SPJ]: transformational

FPL =⇒ λ-calculus with patterns (Chapter 4) =⇒ λ-calculus (with []; Chapter 6)

Miranda

λ-calculus

λ-calculus with patterns

Madrid (Virtual); ISR 2021 10–07–2021 17

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf
https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Compiling pattern matching into λ-calculus for Haskell

Idea

sequentialise matching symbol by symbol [SPJ] (Chapter 5, Wadler)

Example (Remove repetitions of elements by pattern matching)

unrep [] = []

unrep [x] = [x]

unrep (x:y:xs) = if x == y then unreptail else x:unreptail where

unreptail = unrep (y:xs)

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Madrid (Virtual); ISR 2021 10–07–2021 18

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Compiling pattern matching into λ-calculus for Haskell

Idea

sequentialise matching symbol by symbol [SPJ] (Chapter 5, Wadler)

Example (Remove repetitions of elements by pattern matching)

unrep [] = []

unrep [x] = [x]

unrep (x:y:xs) = if x == y then unreptail else x:unreptail where

unreptail = unrep (y:xs)

patterns match top–bottom (left–right); may have nested patterns like x:y:xs

compile away using case

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Madrid (Virtual); ISR 2021 10–07–2021 18

https://www.microsoft.com/en-us/research/uploads/prod/1987/01/slpj-book-1987.pdf

Compiling pattern matching into λ-calculus for Haskell

Example (Remove repetitions of elements by pattern matching)

unrep [] = []

unrep [x] = [x]

unrep (x:y:xs) = if x == y then unreptail else x:unreptail where

unreptail = unrep (y:xs)

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Madrid (Virtual); ISR 2021 10–07–2021 18

Compiling pattern matching into λ-calculus for Haskell

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Discussion

I sequentialisation due to top–bottom and left–right order (Haskell)

I proper case split due to non-ambiguity and linearity of patterns (Haskell)

I case implementable in λ-calculus by discriminating constructors (Böhm)

Madrid (Virtual); ISR 2021 10–07–2021 19

Compiling pattern matching into λ-calculus for Haskell

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Discussion

I sequentialisation due to top–bottom and left–right order (Haskell)

I proper case split due to non-ambiguity and linearity of patterns (Haskell)

I case implementable in λ-calculus by discriminating constructors (Böhm)

Madrid (Virtual); ISR 2021 10–07–2021 19

Compiling pattern matching into λ-calculus for Haskell

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Discussion

I sequentialisation due to top–bottom and left–right order (Haskell)

I proper case split due to non-ambiguity and linearity of patterns (Haskell)

I case implementable in λ-calculus by discriminating constructors (Böhm)

Madrid (Virtual); ISR 2021 10–07–2021 19

Compiling pattern matching into λ-calculus for Haskell

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Discussion

I sequentialisation due to top–bottom and left–right order (Haskell)

I proper case split due to non-ambiguity and linearity of patterns (Haskell)

I case implementable in λ-calculus by discriminating constructors (Böhm)

Madrid (Virtual); ISR 2021 10–07–2021 19

Compiling pattern matching into λ-calculus for Haskell

Example (Sequentialise using case expressions)

unrepc l = case l of

[] -> []

(x:t) -> case t of

[] -> l

(y:t') -> if x == y then unrepc t else x:unrepc t

Discussion

I sequentialisation due to top–bottom and left–right order (Haskell)

I proper case split due to non-ambiguity and linearity of patterns (Haskell)

I case implementable in λ-calculus by discriminating constructors (Böhm)

Madrid (Virtual); ISR 2021 10–07–2021 19

Lazy patterns in Haskell

Motivation

sometimes we know, say due to typing or due to knowing that we have an
infinite stream, that only one pattern is possible, say a pair, but we want to
match lazily, e.g. we are not interested in the arguments, or only want to match
when the arguments/projections are needed

Haskell has lazy patterns; indicated by ~ in Haskell or pattern bindings

Example of pattern binding

fib@(1:tfib) = 1 : 1 : [a+b | (a,b) <- zip fib tfib]

where @ makes fib an alias of the pattern binding 1:tfib

lazy patterns akin to speculative execution (bad things may happen)

Madrid (Virtual); ISR 2021 10–07–2021 20

Lazy patterns in Haskell

Motivation

sometimes we know, say due to typing or due to knowing that we have an
infinite stream, that only one pattern is possible, say a pair, but we want to
match lazily, e.g. we are not interested in the arguments, or only want to match
when the arguments/projections are needed
Haskell has lazy patterns; indicated by ~ in Haskell or pattern bindings

Example of pattern binding

fib@(1:tfib) = 1 : 1 : [a+b | (a,b) <- zip fib tfib]

where @ makes fib an alias of the pattern binding 1:tfib

lazy patterns akin to speculative execution (bad things may happen)

Madrid (Virtual); ISR 2021 10–07–2021 20

Lazy patterns in Haskell

Motivation

sometimes we know, say due to typing or due to knowing that we have an
infinite stream, that only one pattern is possible, say a pair, but we want to
match lazily, e.g. we are not interested in the arguments, or only want to match
when the arguments/projections are needed
Haskell has lazy patterns; indicated by ~ in Haskell or pattern bindings

Example of pattern binding

fib@(1:tfib) = 1 : 1 : [a+b | (a,b) <- zip fib tfib]

where @ makes fib an alias of the pattern binding 1:tfib

lazy patterns akin to speculative execution (bad things may happen)

Madrid (Virtual); ISR 2021 10–07–2021 20

Lazy patterns in Haskell

Motivation

sometimes we know, say due to typing or due to knowing that we have an
infinite stream, that only one pattern is possible, say a pair, but we want to
match lazily, e.g. we are not interested in the arguments, or only want to match
when the arguments/projections are needed
Haskell has lazy patterns; indicated by ~ in Haskell or pattern bindings

Example of pattern binding

fib@(1:tfib) = 1 : 1 : [a+b | (a,b) <- zip fib tfib]

where @ makes fib an alias of the pattern binding 1:tfib

lazy patterns akin to speculative execution (bad things may happen)

Madrid (Virtual); ISR 2021 10–07–2021 20

Lazy patterns in Haskell translation exercise

Exercise on translating (lazy) patterns into cases

how does ispair mypair for the code below evaluate and why? same question
for ispairl and ispairw. can your translate these definitions into case
expressions/projections? what about when changing each True into x+y?

ispair (x,y) = True

ispairl ~(x,y) = True

ispairw p = True where

x = fst p

y = snd p

mypair = mypair

Note (,) is the only constructor of the pair data type

Madrid (Virtual); ISR 2021 10–07–2021 21

Lazy patterns in Haskell exercise

Exercise on lazy patterns

consider the following core client–server program; from Haskell [tutorial]:
reqs = client initmsg resps

resps = server reqs

client msg (r:rs) = msg : client (next r) rs

server (r:rs) = process r : server rs

initmsg = 0

next r = r

process r = r+1

for this program take 10 reqs does not generate any output, but yields
[0,1,2,3,4,5,6,7,8,9] when making client lazy by means of ~(r:rs).
can you explain this, based on sequentialising patterns as presented?

Madrid (Virtual); ISR 2021 10–07–2021 22

https://www.haskell.org/tutorial/patterns.html

	Motivation
	Design space/decisions
	Some -calculi with patterns
	C
	RPC
	CRS/HRS

	Patterns in Haskell

