Session Types for Message-Passing Concurrency

Jorge A. Pérez
University of Groningen, The Netherlands
www.jperez.nl - j.a.perez [[at]] rug.nl

UNIFYING
CeRRECTNESS FOR
CeMMUNICATING

S*FTWARE

ISR - July 2021
(Part 2, v1.1)

https://www.jperez.nl

Outline

Context

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 2 /49

This Course

A bird’s eye view on session types for message-passing concurrency, in two parts:

1. Session types before 2010:
Motivation, key ideas, essential notions of binary and multiparty session types.

2. Session types after 2010:
The Curry-Howard correspondence between linear logic and session types
(aka “propositions as sessions”)

Jorge A. Pérez (Univ. of Groningen Session Types for Message-Passing Concurrency (Part |l 3/49
g

This Course

A bird’s eye view on session types for message-passing concurrency, in two parts:

1. Session types before 2010:
Motivation, key ideas, essential notions of binary and multiparty session types.

2. Session types after 2010:
The Curry-Howard correspondence between linear logic and session types
(aka “propositions as sessions”)

My proposal: Part 1 — Q&A — Break — Part 2 — Q&A

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 3 /49

Keywords and Slogans

Concurrency Theory, Message-Passing, Programming Languages, Verification

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 4 /49

Keywords and Slogans

Concurrency Theory, Message-Passing, Programming Languages, Verification

e Type systems
Slogan: Well-typed programs can't go wrong (Milner)

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 4 /49

Keywords and Slogans

Concurrency Theory, Message-Passing, Programming Languages, Verification

e Type systems
Slogan: Well-typed programs can't go wrong (Milner)

e Session types for communication correctness
Slogan: What and when should be sent through a channel

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 4 /49

Keywords and Slogans

Concurrency Theory, Message-Passing, Programming Languages, Verification

e Type systems

Slogan: Well-typed programs can't go wrong (Milner)
e Session types for communication correctness

Slogan: What and when should be sent through a channel
e Process calculi

Slogan: The m-calculus treats processes like the A-calculus treats functions
e Propositions as sessions

Linear logic propositions <> session types

Proofs < m-calculus processes
Cut elimination <> process communication

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 4 /49

Outline

Propositions as Sessions

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 5/ 49

Propositions as sessions

Linear logic propositions <> session types
Proofs < m-calculus processes
Cut elimination <« process communication

Developed by Caires & Pfenning for intuitionistic linear logic (2010).
Adapted to classical linear logic by Wadler (2012).

Main Features
» Clear account of resource usage policies in concurrency
» Session fidelity, runtime safety, global progress “for free”
» Excellent basis for generalizations and extensions

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

6/49

Propositions as sessions

Linear logic propositions <+ session types
Proofs < m-calculus processes
Cut elimination <« process communication

Developed by Caires & Pfenning for intuitionistic linear logic (2010).
Adapted to classical linear logic by Wadler (2012).

Plan:
» Interpreting propositions in linear logic as session types
» The language of the m-calculus and its semantics
» The sequent calculus as a type system for the mw-calculus

» Examples and extensions

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

6/49

Protocols as Session Types

S = 1U;S output value of type U, continue as S

| ?U; S input value of type U, continue as S

| &{l;: Si}ier branching: offer a selection between Sy, ..., S,
| ®{L : Si}ier select one between Si, ..., S,
|
|

ut.S | t recursion
end terminated protocol
(Labels 1y, ..., I, are pairwise different.)

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 7 /49

Linear Logic as Session Types (Caires & Pfenning, 2010)

A B:= A®B [Output object of type A, continue as B]
A—oB [Input object of type A, continue as B]

&{li : Ai}ie] [Offer all of A;]

|

|

| @{lz‘ . Ai}ie[[Select one of A;]

| lA [Persistent offer of A]
|

1 [Terminated interaction]

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 8 /49

Linear Logic as Session Types (Caires & Pfenning, 2010)

A B::= A®B [Output object of type A, continue as B]
I A—oB [Input object of type A, continue as B]
‘ &{lz : Ai}ie]’ [Offer all of A;]
‘ @{11‘ : Ai}ie[[Select one of Aj]
| lA [Persistent offer of A]
| 1 [Terminated interaction]
Notice:
» The multiplicative conjunction ® (‘tensor’) is given a non-commutative reading

» The exponential ‘" (*bang’) rather than recursion

» We will have assignments enforcing the use of a name according to some type A
Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 8 /49

A Synchronous m-calculus

We use z, v, z, . .. to denote names (or channels).
P,Q = z(z).P send z on z, proceed as P
| z(y).P receive z on z, proceed as P{z/y}

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 9 /49

A Synchronous m-calculus

We use z, v, z, . .. to denote names (or channels).
P,Q = z(z).P send z on z, proceed as P
| z(y).P receive z on z, proceed as P{z/y}
| z.case(P, Q) branching: offers a choice at =
| z.inl; P select left at z, continue as P
| z.inr; P select right at z, continue as P

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 9 /49

A Synchronous m-calculus

We use z, v, z, . .. to denote names (or channels).
P,Q = z(z).P send z on z, proceed as P
| z(y).P receive z on z, proceed as P{z/y}
| z.case(P, Q) branching: offers a choice at =
| z.inl; P select left at z, continue as P
| z.inr; P select right at z, continue as P
| lz(y).P replicated server at z

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 9 /49

A Synchronous 7r-calculus

We use z, v, z, . .. to denote names (or channels).
P,Q = z(z).P send z on z, proceed as P
| z(y).P receive z on z, proceed as P{z/y}
| z.case(P, Q) branching: offers a choice at =
| z.inl; P select left at z, continue as P
| z.inr; P select right at z, continue as P
| lz(y).P replicated server at z
| [z forwarder: fuses z and y
| P|Q parallel composition
| (vy)P name restriction
| o Inaction

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 9 /49

A Synchronous Tr-calculus (n-ary)

We use z,y, z, ... to denote names (or channels).
P,Q = z(z).P send z on z, proceed as P

| z(y).P receive z on z, proceed as P{z/y}
\ z>{1::Py, ..., 1,:P,} branching: offers a choice at z
| z<1,;P select label 1; at z, continue as P
| lz(y).P replicated server at z
| [z forwarder: fuses z and y
\ P|Q parallel composition
| (vy)P name restriction
| 0 inaction

Notation: We write Z(y) to stand for the bound output (vy)z(y).

Jorge A. Pérez (Univ. of Groningen)

Session Types for Message-Passing Concurrency (Part I1) 10 / 49

Some Simple Processes (1)
An authentication server:

SBody(s) = s(user).s>{email : P, app: @, sms: R}
where

P = s(pwd).5(y).([y <> code] | s(c).0) (for email-based confirmation)
Q = s(pin).s(y).(J[y<>qr] | s(n).s(c).0) (for confirmation with a QR code)
R = s(pwn).3(y).([y <> msg] | s(n).0) (for confirmation with a phone)

A candidate client, Client(s):
5(u).([u<> 'myUser'] | s <sms;3(n).([n<>'666'] | s(m).5(c).([c+>"0k'] | 0)))

The whole system:
(vs)(SBody(s) | Client(s))

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 11 / 49

Some Simple Processes (2)

The authentication server (where P, @, and R are as before):
SBody(s) = s(user).s>{email : P, app: @, sms: R}
The candidate client, Client(s):

5(u).([ue> 'myUser'] | s<sms;3(n).([n+'666'] | s(m).5(c).([c+>0k'] | 0)))

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 12 / 49

Some Simple Processes (2)

The authentication server (where P, @, and R are as before):
SBody(s) = s(user).s>{email : P, app: @, sms: R}
The candidate client, Client(s):
5(u).([ue> 'myUser'] | s<sms;3(n).([n+'666'] | s(m).5(c).([c+>0k'] | 0)))
The whole system, now as a client-server interaction:
(vu)('u(s).SBody(s) | (vy)uly).Client(y))

Intuition: The client will communicate on u to request a copy of the server body
using a fresh name y; the server will remain available to other client requests.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 12 / 49

Operational Semantics

Reduction determines the behavior of a process on its own:

z(y).Q lz(2).P — Q[P{Yz}

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 13 / 49

Operational Semantics

Reduction determines the behavior of a process on its own:

z(y).Qlz(2).P — Q| P{Yz}
z(y).Q |'z(z).P — Q| P{¥Y/z}|'z(2).P

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 13 / 49

Operational Semantics

Reduction determines the behavior of a process on its own:

(y).Q | z(2).P — Q| P{Y/z}
z(y).Q |'z(z).P — Q| P{¥Y/z}|'z(2).P
z.inr; P | z.case(Q,R) — P |R
z.inl; P |z.case(Q,R) — P |Q

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

13/ 49

Operational Semantics

Reduction determines the behavior of a process on its own:

z(y).Q | z(2).P
z(y).Q |'z(2).P
z.inr; P | z.case(@Q, R)
z.inl; P | z.case(Q, R)
(vz)([z < y] | P)

Jorge A. Pérez (Univ. of Groningen)

— Q| P{Y/z}

— Q| P{Yz}|'z(2).P
— P|R

— P|Q

— P{ly/z} (z#vy)

Session Types for Message-Passing Concurrency (Part I1)

13/ 49

Operational Semantics

Reduction determines the behavior of a process on its own:

z(y).Q | z(2).P — Q| P{¥Yz}
z(y).Q |'z(z).P — Q| P{¥Y/z}|'z(2).P
z.inr; P | z.case(Q,R) — P |R
z.inl; P |z.case(Q,R) — P |Q
(vz)([z<yl | P) — Ply/z} (z#y)
Q—>Q = PlQP|Q
P—Q = (wyP— (vy)Q

Closed under structural congruence, noted =.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 13 / 49

Propositions as Session Types (CONCUR'10)

The assignment z:A enforces the use of name z according to type A:

A B:= A®B [
| A—B [
| &{1;: A;}ier [Offer all of Aj]
| @®{1li: Aitier |
| [
| [

Output name of type A, continue as B]

Input name of type A, continue as B]

Select one of A;]
A Persistent offer of A]

1

Terminated interaction]

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 14 / 49

Type Judgments: Intuitions

P:z:C

Process P offers behavior C at name z

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 15 / 49

Type Judgments: Intuitions

T A, AL FE P2z C

Process P offers behavior C at name z
when composed with
processes offering A, at xz;, ---, A, at z,

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 15 / 49

Type Judgments: Intuitions

T A, AL FE P2z C

Process P offers behavior C at name z
when composed with
processes offering A, at xz;, ---, A, at z,

Examples AF P:z:1 P offers nothing relying on behaviors A

Qi z:1A @ Isan autonomous replicated server
z: AR BF R:z:C R requires A, B on z to offer z : C

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 15 / 49

Type Judgments

w A, Uy A, By, ... o BiE Pz C
N A

(Names wu;, z;, z pairwise distinct.)

Intuition: Process P offers behavior C' at name z when composed with processes
implementing the behaviors described in [and A.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 16 / 49

Type Judgments

w Ay, Uy A, By, BbEF Pz C
B A

(Names u;, z;, z pairwise distinct.)
Intuition: Process P offers behavior C' at name z when composed with processes
implementing the behaviors described in " and A.

Dependencies as two sets of type assignments (contexts), I and A:
e [specifies shared services A; along u;

e A specifies linear services B; along z; [no weakening, contraction]

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 16 / 49

Typing Rules

In its intuitionistic formulation, the logic correspondence induces right and left
typing rules:
e Right rules detail how a process can implement the behavior described by the
given connective

e |eft rules explain how a process may use a session of a given type

Rules for cut in sequent calculus read as well-typed process composition, based on
restriction and parallel composition.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 17 / 49

Some Typing Rules: Identity, ®, and &

z:Ab[z2z] 2z A

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 18 / 49

Some Typing Rules: Identity, ®, and &

z:Ab[z2z] 2z A

HAFP: iy A ANFQ:z:B
HAANFZ(y). (Pl Q)z: A®B

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

18 / 49

Some Typing Rules: Identity, ®, and &

z:Ab[z2z] 2z A
HAFP: iy A ANFQ:z:B
HAANFZ(y). (Pl Q)z: A®B
Ay:Az:BFP:T
Az A BFz(y).P:: T

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

18 / 49

Some Typing Rules: Identity, ®, and &

z:Ab[z2z] 2z A
HAFP: iy A ANFQ:z:B
HAANFZ(y). (Pl Q)z: A®B
Ay Az:BFP:T
Az A BFz(y).P:: T
AFP:z: A [AFQ:z: B
AFxz.case(P,Q): 2z : A& B

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

18 / 49

Some Typing Rules: Identity, ®, and &

z:Ab[zcz] 2
AFP: iy A AR Q:

HAANFZ(y). (Pl Q)z: A®B

Ay:Az:BFP::T
Az A BFz(y).P:: T

AFP .z A AR Q:x

AFxz.case(P,Q): 2z : A& B

Az AFP:: T Az:BFEP: T

A, z: A&Bl—azlnlp T FA:I: A&Bl—xlan T

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Con

ncy (Part I1)

18 / 49

Some Typing Rules: — and &

Ay:AFP:z: B
AFz(y).Pz:A—B

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 19 / 49

Some Typing Rules: — and &

Ay A-P:z:B
AFz(y).Pz:A—B

AFP: iy A ANz BFEQ: T
AN z:A—-BrFZ(y).(P|Q): T

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

19 / 49

Some Typing Rules: —o and &

Ay A-P:z:B
AFz(y).Pz:A—B

AFP: iy A ANz BFEQ: T
AN z:A—-BrFZ(y).(P|Q): T
AFP . xz: A "Axz:B-FP:: T
"AFzinl;P::z: AP B T ;Abzinr;P::z: ADB

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 19 / 49

Some Typing Rules: —o and &

Ay A-P:z:B
AFz(y).Pz:A—B

AFP: iy A ANz BFEQ: T
AN z:A—-BrFZ(y).(P|Q): T
AFP: .z A [A,z: BFP:: T
"AFzinl;P::z: AP B T ;Abzinr;P::z: ADB
Az:AFP T Az:BFQ: T
Az: A® BFz.case(P, Q) T

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 19 / 49

Typing Composition

Linear Composition
Cut as composition principle for linear services:
AFP: iz A AN z: AFQ T
AANEwz)(P| Q) T

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 20 / 49

Typing Composition

Linear Composition
Cut as composition principle for linear services:
AFP: iz A AN z: AFQ T
AANEwz)(P| Q) T

Shared Composition
Cut! as composition principle for shared services:
M -FPy: A Nu: A AFQ:z:C
HAEF (vu)(lu(y).P| Q) iz C

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

20 / 49

Linear Cut as Process Reduction

APy A Ay Py ix:B Az, y A, z:BFQ:: T
AL, DM EZ(y) (P P) iz AR B N3,z AR Brz(y).Q T
Ay, Ao, Az (vz)(zZ(y).(Pr | P2) | 2(y).Q) = T

e
APy A Az, y A z:BFQ:: T
Ny Py z:B Ay, A3,z BE(vy)(P | Q) T

Ay, Do, Ag b (vz)(Pe | (vy)(P1] Q) = T

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 21 / 49

Shared Cut as Process Reduction

NuA ANz AFQ T
M-FPuzA FNuAA-u(z)Q: T
AF (vu)(lu(z).P | a(z).Q) = T Mt

copy

—
M-FP:uxzA MuA ANz AEQ T !
M-FP.zA Az AF (vu)(lu(z).P| Q) T cut

AR (ve)(P | (vu)(lu(z).P| Q) T cut

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

22/ 49

Properties of the Type System

Theorem (Type Preservation)
IfT; AP z:Aand P— Q then; A+ Q :: z: A.

e Process reductions map to principal cut reductions
e Derived properties: communication safety and session fidelity.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 23 /49

Properties of the Type System

Theorem (Type Preservation)
IfT; AP z:Aand P— Q then; A+ Q :: z: A.

e Process reductions map to principal cut reductions
e Derived properties: communication safety and session fidelity.

For any P, define lwe(P) iff P = (vn)(m.Q | R) for some 7.Q, R, . where 7.Q is
a non-replicated guarded process.

Theorem (Global Progress / Deadlock Avoidance)
If ;- P z:1 and lwe(P) then exists a Q such that P — Q.

Also: Termination / Strong Normalization.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 23 /49

Outline

Multiparty and Binary Session Types

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 24 / 49

Binary Session Types (BSTs)

- Exactly two partners
- Correctness relies on action compatibility

- Well-understood theory and analysis techniques

Binary Session Types (BSTs)

- Exactly two partners
- Correctness relies on action compatibility

- Well-understood theory and analysis techniques

Multiparty Session Types (MPSTs)

- More than two partners
- Global and local types, related by projection
- Subtle underlying theory; analysis techniques hard to obtain

Binary Session Types (BSTs)

- Exactly two partners
- Correctness relies on action compatibility
- Well-understood theory and analysis techniques

Foundational significance:
Curry-Howard correspondence with linear logic [Caires&Pfenning’'10; Wadler'12]

Multiparty Session Types (MPSTs)

- More than two partners
- Global and local types, related by projection
- Subtle underlying theory; analysis techniques hard to obtain

Binary Session Types (BSTs)

- Exactly two partners
- Correctness relies on action compatibility
- Well-understood theory and analysis techniques

Foundational significance:
Curry-Howard correspondence with linear logic [Caires&Pfenning’'10; Wadler'12]

Multiparty Session Types (MPSTs)

- More than two partners

- Global and local types, related by projection

- Subtle underlying theory; analysis techniques hard to obtain
Foundational significance:

Characterization via communicating automata (CFSMs)
[Deniélou& Yoshida'12,13; Lange, Tuosto, Yoshida'15]

Can MPSTs Be Reduced Into BSTs?

e A reduction would be insightful and practically useful
e Practice suggests MPSTs are more expressive than BSTs

e Challenge: Decompose global specs into binary pieces

- preserving sequencing information
- avoiding communication errors
- retaining significance of standard models

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 26 / 49

A Positive Answer

A two-way correspondence between

e Standard MPSTs with communication & composition, following
[Honda,Yoshida,Carbone’08; Deniélou & Yoshida'13]

e BSTs based on linear logic, following [Caires & Pfenning’10]:
fidelity, safety, termination, (dead)lock-freedom by typing

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 27 / 49

Our Approach: Medium Processes

Global type
Type Local types
Checking
| Paice | | Poob | ’ Pearo1 ‘ ’ Paave ‘ Programs

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

28 / 49

Our Approach: Medium Processes

Tdave

’ Pbob ‘ ’ Pcarol‘ ’ Pdave ‘ | M[[Gﬂ|
Medium

e The medium process M[G]

- Intermediate party in all exchanges in G
- Captures sequencing information in G by decoupling interactions

e Local implementations need not know about M[G]

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 28 / 49

Our Approach: Medium Processes

\

Binary Type :
Checking i

i ’ Palice ‘ ’ Pbob ‘ ’ Pcarol ‘ ’ Pdave ‘ | M[[Gﬂ | !

'-‘ Medium ,'

e The medium process M[G]

- Intermediate party in all exchanges in G
- Captures sequencing information in G by decoupling interactions

e Local implementations need not know about M[G]

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 28 / 49

MPSTs: Syntax

e Define global types G and local types T as

G = p—>»q{1l{U;).G;}tic;1 | G1]| Gy | end
T p{1i(U:). Titier | pH{Li(Ui). Titier | end
U == bool |nat|str| ... | T

e The global type syntax subsumes those given in
[Honda, Yoshida, Carbone’08; Deniélou and Yoshida'13]

e G [p; is the projection of G onto participant p; (merge-based)

e Well-formedness: Correct projectability on all participants

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 29 / 49

Example: A Commit Protocol
Structured interaction among three participants p, q, and r:

G = p—»q:{act<int).
q—»r:{sig(str).
p—»r:{comm(l).end}} ,
quit(int).
q—»r:{save(l).
p—»r:{fin(l).end} } }
The projections of G onto p and r:
Glp= q!{act(int).r!{comm(l).end}, quit(int).r!{fin(l).end}}
Glq= p?{act(int>.r!{sig(str).end}, quit(int}.q!{save(l).end}}
Glr = q?{sig(str>.p?{comm(l).end}, save(l).p?{fin<1>.end}}

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 30 / 49

Medium Process of a Global Type

e M[p > q: (U).G] = cp(w).5(v).(fus+o] | M[G])
e M[p—=q:{lL: Gitlicr] = cpl>{lz- LAl M[[Gi]]}ief

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 31/ 49

Medium Process of a Global Type

Mlp = q:(U).G] = cp(w).C(v).([uv] | M[G])
Mlp = a:{l: Gitier] = >{k: oL M[Gi]},,
Mlp—a:{1:(U:).Gi}ier]| =

cpl>{l¢ D ep(u).cq 9l c(v).([uerv] | I\/I[G’l]])}

1€l

M[end] =0

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 31/ 49

An Example: The Commit Protocol

G = p—»q:{act(int).q—»r:{sig(str).p—»r:{comm(l).end}},

quit(int).g— r:{save<1>.p—»r:{fin(l).end}} }

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 32 /49

An Example: The Commit Protocol

G = p—»q:{act(int).q—»r:{sig(str).p—»r:{comm(l).end}},

quit(int).q— r:{save<1>.p—»r:{fin(1>.end}} }

e The medium process M[G]:
G D{ act : ¢,(v).cg<act; G(w).([wv] |
cq>{sig: cy(n).c. <sig; c;(m).([n<m] |
c, >{comm : c,(u).c, < comm; & (y).([ucry] | 0)})}) ,
quit @ ¢, (v).cq <quit; Ty(w).([w<>v] |
cy>{save : cy(n).c, < save; ¢, (m).([n > m] |

e o {fin: (). 9 £in; T (y).((uery] | 0)})})}

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 32 /49

MPSTs and BSTs: Correspondence (1/2)

e The type judgment from [Caires & Pfenning'10]:
AFP:z:C

P provides behavior C' at channel z using “services” in ['; A

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

33/ 49

MPSTs and BSTs: Correspondence (1/2)
e The type judgment from [Caires & Pfenning'10]:
AP z:C

P provides behavior C' at channel z using “services” in ['; A
e A compositional typing gives a binary type for all participants
e Mapping (-)) from local types T to binary session types A

Theorem (Well-Formed G — Well Typed M[G])
Let G be a well-formed global type, with part(G) = {p1. ..., pn}. Then
M eGP, . o ((Glpa) F MIG] = —1

is a compositional typing for M[G], for some T .

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

33/ 49

MPSTs and BSTs: Correspondence (2/2)
e The type judgment from [Caires & Pfenning'10]:
AFP . z:C
e A compositional typing gives a binary type for all participants.

e Mapping ((-)) from local types T to binary session types A
e Ordering <" relates local branching types (akin to subtyping)

Theorem (Well-Typedness — WF Global Types)
Let G be a global type. If

[cpi Ao, G Ap E MG i =11

is a compositional typing for M[G] then there are local types Ty, ..., T, s.t.
G’[rj =< 'I'J and <<'I'J>> = Aj, for all r; € G.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 34 /49

Operational Correspondence

Medium processes faithfully mirror global types

e The annotated medium M[G]; uses a fresh k to mimic each action of G.

e If G is well-formed then we have, for some [:

[o (GTp1), .o 6 i {Glpn) EF MGk k2 (G

(G)) is a binary type that captures the sequentiality in G.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

35/ 49

Operational Correspondence

Medium processes faithfully mirror global types
e The annotated medium M[G]; uses a fresh k to mimic each action of G.

e If G is well-formed then we have, for some [:
o (GIp1) -0 o, AGTPn) EM[Gx = k2 (G
(G)) is a binary type that captures the sequentiality in G.

Operational correspondence for multiparty systems
o let S=We)(Py| - | P | M[G]) be a system realizing G.
e Every move of G can be mimicked by an action of S on k.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 35 /49

The Commit Protocol, Revisited

Given the commit protocol G, we look at the properties of M[G].

e The bidirectional correspondence ensures

[P :Q ¢ :REM[G] 1 —:1

for some I, with types P = (Glp)), Q = (Glq)), and R= {GIlr)).

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

36 / 49

The Commit Protocol, Revisited
Given the commit protocol G, we look at the properties of M[G].

e The bidirectional correspondence ensures
[P :Q ¢ :REM[G] 1 —:1

for some I, with types P = (Glp)), Q = (Glq)), and R= {GIlr)).

e \We may then just compose M[G] with compatible implementations:
b Impy e, P Impg i Q. and < E Imp, ey R

- (ve) (Impy [(veg) (Impy | (ver)(Imp, [M[G])))

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 36 / 49

The Commit Protocol, Revisited
Given the commit protocol G, we look at the properties of M[G].

e The bidirectional correspondence ensures
[P :Q ¢ :REM[G] 1 —:1

for some I, with types P = (Glp)), Q = (Glq)), and R= {GIlr)).

e \We may then just compose M[G] with compatible implementations:
b Impy e, P Impg i Q. and < E Imp, ey R

- (ve) (Impy [(veg) (Impy | (ver)(Imp, [M[G])))

e We derive fidelity, deadlock-freedom, termination from BSTs.
Operational correspondence ensures that M[G] is just a router.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 36 / 49

Sharing in Multiparty Conversations

e Suppose that implementations to be composed with M[G] must be invoked
from a replicated server. For instance: ;- lu(c,). Imp, = u;: P

e We need an “initiator” to spawn a copy of the medium'’s required type, ready at
an appropriate name. For instance:

Su IQF () [T cg) ey Q

e Let RepImp,, RepImp,, and RepImp,, denote the composition of replicated
definitions and initiators above. Then:

[- F (vey)(RepImp, | (vey)(RepImp, | (ve,)(RepImp, [M[G])))
e The medium could spawn the local implementations itself:
ur(cp) U cq) - Us(cr). M[G]

We can show that alternative settings are bisimilar

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 37 /49

Different Worlds, Linked by Mediums

MPSTs explained from different angles
Logic justifications for MPSTs notions:

- projection, type well-formedness
- semantics of global types
- behavioral equivalences (global swapping)

Connects standard MPSTs to process implementations

Supports name passing, delegation, composition,
infinite behavior/sharing
Techniques for BSTs applied to MPSTs

- deadlock freedom

- typed behavioral equivalences
- parametric polymorphism

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 38 /49

Outline

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 39 /49

Summary

We have overviewed:
e Key notions underlying binary session types and multiparty session types
(without committing to a process model)

e A concurrent interpretation of linear logic that
- Clarifies the logical foundations of binary session types, in the spirit of the

Curry-Howard isomorphism
- ldentifies a class of m-calculus processes which enjoy fidelity, safety, and progress
- Offers a canonical perspective also for multiparty session types

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 40 / 49

Further Topics

Research on session types has long addressed topics not mentioned here, including:

Different liveness properties (progress, deadlock-freedom, and lock-freedom)
Synchronous / asynchronous communication disciplines
Connections between session types and automata theory

Security properties (secure information flow, access control)

Integration of session types into object-oriented, functional, and imperative
calculi and languages

Behavioral equivalences as informed by session types

Session types and models of exceptions, reversibility, run-time monitoring
and adaptation

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 41 / 49

Essential References

e Kohei Honda, Vasco Thudichum Vasconcelos, Makoto Kubo:
Language Primitives and Type Discipline for Structured
Communication-Based Programming. ESOP 1998.

e Kohei Honda, Nobuko Yoshida, Marco Carbone:
Multiparty asynchronous session types. POPL 2008.
Also: Journal of the ACM, Volume 63(1): 9 (2016)

e Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, Nobuko Yoshida:
A Gentle Introduction to Multiparty Asynchronous Session Types. SFM
2015.

e Luis Caires, Frank Pfenning, Bernardo Toninho:
Linear logic propositions as session types.
Math. Structures in Comp. Science 26(3): 367-423 (2016)
(Extended version of a CONCUR 2010 paper.)

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 42 / 49

Further (Recent) References

e Hans Huttel et al:
Foundations of Session Types and Behavioural Contracts. ACM Comput.
Surv. 49(1): 3 (2016)

e Davide Ancona et al:
Behavioral Types in Programming Languages. Foundations and Trends in
Programming Languages 3(2-3): 95-230 (2016)

e Luis Caires and Jorge A. Pérez:
Multiparty Session Types Within a Canonical Binary Theory, and Beyond.
FORTE 2016.

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 43 / 49

Outline

Our Challenges

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 44 / 49

My Group's Current Challenge

-
e Many behavioral type systems! .
e Correctness via various behavioral properties cm
- Protocol fidelity, comm. safety, deadlock-freedom (_’m_,g

e Different type systems, properties and insights

G—

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 45 / 49

My Group's Current Challenge

-
e Many behavioral type systems! (E.—
e Correctness via various behavioral properties :m
- Protocol fidelity, comm. safety, deadlock-freedom (_’mﬁo
e Different type systems, properties and insights @S -
e A program can be both correct and incorrect!

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 45 / 49

Relative Expressiveness

Connect behavioral type systems
by relating the concurrent languages on which they operate

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 46 / 49

Relative Expressiveness

Connect behavioral type systems
by relating the concurrent languages on which they operate

v/ Encodability result:
A correct compiler between two concurrent languages

X Separation result:
A proof that a correct compiler does not exist

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 46 / 49

Relative Expressiveness

Connect behavioral type systems
by relating the concurrent languages on which they operate

v/ Encodability result:
A correct compiler between two concurrent languages

X Separation result:
A proof that a correct compiler does not exist

‘ = A general, rigorous, flexible, and practical approach \

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1) 46 / 49

A Recent Result

Classifying three different session type systems for deadlock-freedom
(joint work with Ornela Dardha, U of Glasgow):

Figure 9: [-]¢ (processes)
Definition 4.2: [-]¢ (contexts)

Figure 7: [-]{ (processes)

[Ple o [T
DF: Theorem 3.2 |

[CD4 -2 [P
uikC

[Tl -< [P){
DEF: Corollary 3.2

Definition 5.4:
Translation (-)

Definition 3.11: []{ (contexts)

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

47 / 49

Another Recent Result

Understanding sequentiality in session types
(Joint work Alen Arslanagic and Erik Voogd):

\spay = u?(a).u?(b).ul{a < 42).0 \

u : ?Int; ?Str; !Bool; end

& ?().u1?(a).czl(a) || 37(a).up?(b).c4!(a, b) || ca?(a, b).us!{a < 42).c5! (b)
uq : ?Int; end uo : ?Str; end us : 'Bool; end
¢ : ?();end c3 : ?(Int); end ¢4 : ?(Int, Bool); end

Jorge A. Pérez (Univ. of Groningen) Session Types for Message-Passing Concurrency (Part I1)

48 / 49

Session Types for Message-Passing Concurrency

Jorge A. Pérez
University of Groningen, The Netherlands
www.jperez.nl - j.a.perez [[at]] rug.nl

UNIFYING
CeRRECTNESS FOR
CeMMUNICATING

S*FTWARE

ISR - July 2021
(Part 2, v1.1)

https://www.jperez.nl

	Context
	Propositions as Sessions
	Multiparty and Binary Session Types
	Closing Remarks
	Our Challenges

