(* Title: HOL/MicroJava/J/TypeRel.thy ID: $Id: TypeRel.thy,v 1.33 2007/07/11 09:32:11 berghofe Exp $ Author: David von Oheimb Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{Relations between Java Types} *} theory TypeRel imports Decl begin -- "direct subclass, cf. 8.1.3" inductive subcls1 :: "'c prog => [cname, cname] => bool" ("_ \<turnstile> _ \<prec>C1 _" [71,71,71] 70) for G :: "'c prog" where subcls1I: "[|class G C = Some (D,rest); C ≠ Object|] ==> G\<turnstile>C\<prec>C1D" abbreviation subcls :: "'c prog => [cname, cname] => bool" ("_ \<turnstile> _ \<preceq>C _" [71,71,71] 70) where "G\<turnstile>C \<preceq>C D ≡ (subcls1 G)^** C D" lemma subcls1D: "G\<turnstile>C\<prec>C1D ==> C ≠ Object ∧ (∃fs ms. class G C = Some (D,fs,ms))" apply (erule subcls1.cases) apply auto done lemma subcls1_def2: "subcls1 G = (λC D. (C, D) ∈ (SIGMA C: {C. is_class G C} . {D. C≠Object ∧ fst (the (class G C))=D}))" by (auto simp add: is_class_def expand_fun_eq dest: subcls1D intro: subcls1I) lemma finite_subcls1: "finite {(C, D). subcls1 G C D}" apply(simp add: subcls1_def2 del: mem_Sigma_iff) thm finite_SigmaI apply(rule finite_SigmaI [OF finite_is_class]) thm finite_subset apply(rule_tac B = "{fst (the (class G C))}" in finite_subset) apply auto done lemma subcls_is_class: "(subcls1 G)^++ C D ==> is_class G C" apply (unfold is_class_def) apply(erule tranclp_trans_induct) apply (auto dest!: subcls1D) done lemma subcls_is_class2 [rule_format (no_asm)]: "G\<turnstile>C\<preceq>C D ==> is_class G D --> is_class G C" apply (unfold is_class_def) apply (erule rtranclp_induct) apply (drule_tac [2] subcls1D) apply auto done constdefs class_rec :: "'c prog => cname => 'a => (cname => fdecl list => 'c mdecl list => 'a => 'a) => 'a" "class_rec G == wfrec {(C, D). (subcls1 G)^--1 C D} (λr C t f. case class G C of None => arbitrary | Some (D,fs,ms) => f C fs ms (if C = Object then t else r D t f))" lemma class_rec_lemma: "wfP ((subcls1 G)^--1) ==> class G C = Some (D,fs,ms) ==> class_rec G C t f = f C fs ms (if C=Object then t else class_rec G D t f)" by (simp add: class_rec_def wfrec [to_pred, where r="(subcls1 G)^--1", simplified] cut_apply [where r="{(C, D). subcls1 G D C}", simplified, OF subcls1I]) definition "wf_class G = wfP ((subcls1 G)^--1)" lemma class_rec_func [code func]: "class_rec G C t f = (if wf_class G then (case class G C of None => arbitrary | Some (D, fs, ms) => f C fs ms (if C = Object then t else class_rec G D t f)) else class_rec G C t f)" proof (cases "wf_class G") case False then show ?thesis by auto next case True from `wf_class G` have wf: "wfP ((subcls1 G)^--1)" unfolding wf_class_def . show ?thesis proof (cases "class G C") case None with wf show ?thesis by (simp add: class_rec_def wfrec [to_pred, where r="(subcls1 G)^--1", simplified] cut_apply [where r="{(C, D).subcls1 G D C}", simplified, OF subcls1I]) next case (Some x) show ?thesis proof (cases x) case (fields D fs ms) then have is_some: "class G C = Some (D, fs, ms)" using Some by simp note class_rec = class_rec_lemma [OF wf is_some] show ?thesis unfolding class_rec by (simp add: is_some) qed qed qed consts method :: "'c prog × cname => ( sig \<rightharpoonup> cname × ty × 'c)" (* ###curry *) method' :: "'c prog × cname => ( sig \<rightharpoonup> cname × ty × 'c)" (* ###curry *) field :: "'c prog × cname => ( vname \<rightharpoonup> cname × ty )" (* ###curry *) fields :: "'c prog × cname => ((vname × cname) × ty) list" (* ###curry *) -- "methods of a class, with inheritance, overriding and hiding, cf. 8.4.6" defs method_def: "method ≡ λ(G,C). class_rec G C empty (λC fs ms ts. ts ++ map_of (map (λ(s,m). (s,(C,m))) ms))" -- "methods of a class, with out inheritance, overriding and hiding" defs method'_def: "method' ≡ λ(G,C). map_of (map (λ(s,m). (s,(C,m))) (snd (snd (the (class G C)))))" lemma method_rec_lemma: "[|class G C = Some (D,fs,ms); wfP ((subcls1 G)^--1)|] ==> method (G,C) = (if C = Object then empty else method (G,D)) ++ map_of (map (λ(s,m). (s,(C,m))) ms)" apply (unfold method_def) apply (simp split del: split_if) apply (erule (1) class_rec_lemma [THEN trans]); apply auto done -- "list of fields of a class, including inherited and hidden ones" defs fields_def: "fields ≡ λ(G,C). class_rec G C [] (λC fs ms ts. map (λ(fn,ft). ((fn,C),ft)) fs @ ts)" lemma fields_rec_lemma: "[|class G C = Some (D,fs,ms); wfP ((subcls1 G)^--1)|] ==> fields (G,C) = map (λ(fn,ft). ((fn,C),ft)) fs @ (if C = Object then [] else fields (G,D))" apply (unfold fields_def) apply (simp split del: split_if) apply (erule (1) class_rec_lemma [THEN trans]); apply auto done defs field_def: "field == map_of o (map (λ((fn,fd),ft). (fn,(fd,ft)))) o fields" lemma table_of_remap_SomeD [rule_format (no_asm)]: "map_of (map (λ((k,k'),x). (k,(k',x))) t) k = Some (k',x) --> map_of t (k, k') = Some x" apply (induct_tac "t") apply auto done lemma field_fields: "field (G,C) fn = Some (fd, fT) ==> map_of (fields (G,C)) (fn, fd) = Some fT" apply (unfold field_def) apply (rule table_of_remap_SomeD) apply simp done -- "widening, viz. method invocation conversion,cf. 5.3 i.e. sort of syntactic subtyping" inductive widen :: "'c prog => [ty , ty ] => bool" ("_ \<turnstile> _ \<preceq> _" [71,71,71] 70) for G :: "'c prog" where refl [intro!, simp]: "G\<turnstile> T \<preceq> T" -- "identity conv., cf. 5.1.1" | subcls : "G\<turnstile>C\<preceq>C D ==> G\<turnstile>Class C \<preceq> Class D" | null [intro!]: "G\<turnstile> NT \<preceq> RefT R" lemmas refl = HOL.refl -- "casting conversion, cf. 5.5 / 5.1.5" -- "left out casts on primitve types" inductive cast :: "'c prog => [ty , ty ] => bool" ("_ \<turnstile> _ \<preceq>? _" [71,71,71] 70) for G :: "'c prog" where widen: "G\<turnstile> C\<preceq> D ==> G\<turnstile>C \<preceq>? D" | subcls: "G\<turnstile> D\<preceq>C C ==> G\<turnstile>Class C \<preceq>? Class D" lemma widen_PrimT_RefT [iff]: "(G\<turnstile>PrimT pT\<preceq>RefT rT) = False" apply (rule iffI) apply (erule widen.cases) apply auto done lemma widen_RefT: "G\<turnstile>RefT R\<preceq>T ==> ∃t. T=RefT t" apply (ind_cases "G\<turnstile>RefT R\<preceq>T") apply auto done lemma widen_RefT2: "G\<turnstile>S\<preceq>RefT R ==> ∃t. S=RefT t" apply (ind_cases "G\<turnstile>S\<preceq>RefT R") apply auto done lemma widen_Class: "G\<turnstile>Class C\<preceq>T ==> ∃D. T=Class D" apply (ind_cases "G\<turnstile>Class C\<preceq>T") apply auto done lemma widen_Class_NullT [iff]: "(G\<turnstile>Class C\<preceq>NT) = False" apply (rule iffI) apply (ind_cases "G\<turnstile>Class C\<preceq>NT") apply auto done lemma widen_Class_Class [iff]: "(G\<turnstile>Class C\<preceq> Class D) = (G\<turnstile>C\<preceq>C D)" apply (rule iffI) apply (ind_cases "G\<turnstile>Class C \<preceq> Class D") apply (auto elim: widen.subcls) done lemma widen_NT_Class [simp]: "G \<turnstile> T \<preceq> NT ==> G \<turnstile> T \<preceq> Class D" by (ind_cases "G \<turnstile> T \<preceq> NT", auto) lemma cast_PrimT_RefT [iff]: "(G\<turnstile>PrimT pT\<preceq>? RefT rT) = False" apply (rule iffI) apply (erule cast.cases) apply auto done lemma cast_RefT: "G \<turnstile> C \<preceq>? Class D ==> ∃ rT. C = RefT rT" apply (erule cast.cases) apply simp apply (erule widen.cases) apply auto done theorem widen_trans[trans]: "[|G\<turnstile>S\<preceq>U; G\<turnstile>U\<preceq>T|] ==> G\<turnstile>S\<preceq>T" proof - assume "G\<turnstile>S\<preceq>U" thus "!!T. G\<turnstile>U\<preceq>T ==> G\<turnstile>S\<preceq>T" proof induct case (refl T T') thus "G\<turnstile>T\<preceq>T'" . next case (subcls C D T) then obtain E where "T = Class E" by (blast dest: widen_Class) with subcls show "G\<turnstile>Class C\<preceq>T" by auto next case (null R RT) then obtain rt where "RT = RefT rt" by (blast dest: widen_RefT) thus "G\<turnstile>NT\<preceq>RT" by auto qed qed end
lemma subcls1D:
G \<turnstile> C \<prec>C1 D
==> C ≠ Object ∧ (∃fs ms. class G C = Some (D, fs, ms))
lemma subcls1_def2:
subcls1 G =
(λC D. (C, D)
∈ (SIGMA C:{C. is_class G C}.
{D. C ≠ Object ∧ fst (the (class G C)) = D}))
lemma finite_subcls1:
finite {(C, D). G \<turnstile> C \<prec>C1 D}
lemma subcls_is_class:
(subcls1 G)++ C D ==> is_class G C
lemma subcls_is_class2:
[| G \<turnstile> C \<preceq>C D; is_class G D |] ==> is_class G C
lemma class_rec_lemma:
[| wfP (subcls1 G)^--1; class G C = Some (D, fs, ms) |]
==> class_rec G C t f = f C fs ms (if C = Object then t else class_rec G D t f)
lemma class_rec_func:
class_rec G C t f =
(if wf_class G
then case class G C of None => arbitrary
| Some (D, fs, ms) =>
f C fs ms (if C = Object then t else class_rec G D t f)
else class_rec G C t f)
lemma method_rec_lemma:
[| class G C = Some (D, fs, ms); wfP (subcls1 G)^--1 |]
==> method (G, C) =
(if C = Object then empty else method (G, D)) ++
map_of (map (λ(s, m). (s, C, m)) ms)
lemma fields_rec_lemma:
[| class G C = Some (D, fs, ms); wfP (subcls1 G)^--1 |]
==> fields (G, C) =
map (λ(fn, ft). ((fn, C), ft)) fs @
(if C = Object then [] else fields (G, D))
lemma table_of_remap_SomeD:
map_of (map (λ((k, k'), x). (k, k', x)) t) k = Some (k', x)
==> map_of t (k, k') = Some x
lemma field_fields:
TypeRel.field (G, C) fn = Some (fd, fT)
==> map_of (fields (G, C)) (fn, fd) = Some fT
lemma refl:
t = t
lemma widen_PrimT_RefT:
G \<turnstile> PrimT pT \<preceq> RefT rT = False
lemma widen_RefT:
G \<turnstile> RefT R \<preceq> T ==> ∃t. T = RefT t
lemma widen_RefT2:
G \<turnstile> S \<preceq> RefT R ==> ∃t. S = RefT t
lemma widen_Class:
G \<turnstile> Class C \<preceq> T ==> ∃D. T = Class D
lemma widen_Class_NullT:
G \<turnstile> Class C \<preceq> NT = False
lemma widen_Class_Class:
G \<turnstile> Class C \<preceq> Class D = G \<turnstile> C \<preceq>C D
lemma widen_NT_Class:
G \<turnstile> T \<preceq> NT ==> G \<turnstile> T \<preceq> Class D
lemma cast_PrimT_RefT:
G \<turnstile> PrimT pT \<preceq>? RefT rT = False
lemma cast_RefT:
G \<turnstile> C \<preceq>? Class D ==> ∃rT. C = RefT rT
theorem widen_trans:
[| G \<turnstile> S \<preceq> U; G \<turnstile> U \<preceq> T |]
==> G \<turnstile> S \<preceq> T