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Abstract. Safe is a first-order functional language with an implicit
region-based memory system and explicit destruction of heap cells. Its
static analysis for inferring regions, and a type system guaranteeing the
absence of dangling pointers have been presented elsewhere.
In this paper we present a new analysis aimed at inferring upper bounds
for heap and stack consumption. It is based on abstract interpretation,
being the abstract domain the set of all n-ary monotonic functions from
real non-negative numbers to a real non-negative result. This domain
turns out to be a complete lattice under the usualv relation on functions.
Our interpretation is monotonic in this domain and the solution we seek
is the least fixpoint of the interpretation.
We first explain the abstract domain and some correctness properties
of the interpretation rules with respect to the language semantics, then
present the inference algorithms for recursive functions, and finally illus-
trate the approach with the upper bounds obtained by our implementa-
tion for some case studies.

1 Introduction

The first-order functional language Safe has been developed in the last few years
as a research platform for analysing and formally certifying two properties of pro-
grams related to memory management: absence of dangling pointers and having
an upper bound to memory consumption. Two features make Safe different from
conventional functional languages: (a) a region based memory management sys-
tem which does not need a garbage collector; and (b) a programmer may ask for
explicit destruction of memory cells, so that they could be reused by the program.
These characteristics, together with the above certified properties, make Safe
useful for programming small devices where memory requirements are rather
strict and where garbage collectors are a burden in service availability.

The Safe compiler is equipped with a battery of static analyses which infer
such properties [12, 13, 10]. These analyses are carried out on an intermediate
language called Core-Safe explained below. We have developed a resource-aware
operational semantics of Core-Safe [11] producing not only values but also exact
figures on the heap and stack consumption of a particular running. The code
generation phases have been certified in a proof assistant [5, 4], so that there is
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a formal guarantee that the object code actually executed in the target machine
(the JVM [9]) will exactly consume the figures predicted by the semantics.

Regions are dynamically allocated and deallocated. The compiler ‘knows’
which data lives in each region. Thanks to that, it can compute an upper bound
to the space consumption of every region and so and upper bound to the total
heap consumption. Adding to this a stack consumption analysis would result in
having an upper bound to the total memory needs of a program.

In this work we present a static analysis aimed at inferring upper bounds
for individual Safe functions, for expressions, and for the whole program. These
have the form of n-ary mathematical functions relating the input argument sizes
to the heap and stack consumption made by a Safe function, and include as
particular cases multivariate polynomials of any degree. Given the complexity
of the inference problem, even for a first-order language like Safe, we have iden-
tified three separate aspects which can be independently studied and solved:
(1) Having an upper bound on the size of the call-tree deployed at runtime by
each recursive Safe function; (2) Having upper bounds on the sizes of all the
expressions of a recursive Safe function. These are defined as the number of cells
needed by the normal form of the expression; and (3) Given the above, having
an inference algorithm to get upper bounds for the stack and heap consumption
of a recursive Safe function.

Several approaches to solve (1) and (2) have been proposed in the literature
(see the Related Work section). We have obtained promising results for them by
using rewriting systems termination proofs [10]. In case of success, these tools
return multivariate polynomials of any degree as solutions. This work presents a
possible solution to (3) by using abstract interpretation. It should be considered
as a proof-of-concept paper: we investigate how good the upper bounds obtained
by the approach are, provided we have the best possible solutions for problems
(1) and (2). In the case studies presented below, we have introduced by hand
the bounds to the call-tree and to the expression sizes.

The abstract domain is the set of all monotonic, non-negative, n-ary functions
having real number arguments and real number result. This infinite domain is a
complete lattice, and the interpretation is monotonic in the domain. So, fixpoints
are the solutions we seek for the memory needs of a recursive Safe function. An
interesting feature of our interpretation is that we usually start with an over-
approximation of the fixpoint, but we can obtain tighter and tighter safe upper
bounds just by iterating the interpretation any desired number of times.

The plan of the paper is as follows: Section 2 gives a brief description of our
language; Section 3 introduces the abstract domain; Sections 4 and 5 give the
abstract interpretation rules and some proof sketches about their correctness,
while Section 6 is devoted to our inference algorithms for recursive functions; in
Section 7 we apply them to some case studies, and finally in Section 8 we give
some account on related and future work.

2 Safe in a Nutshell

Safe is polymorphic and has a syntax similar to that of (first-order) Haskell. In
Full-Safe in which programs are written, regions are implicit. These are inferred
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when Full-Safe is desugared into Core-Safe [13]. The allocation and deallocation
of regions is bound to function calls: a working region called self is allocated
when entering the call and deallocated when exiting it. So, at any execution
point only a small number of regions, kept in an invocation stack, are alive. The
data structures built at self will die at function termination, as the following
treesort algorithm shows:

treesort xs = inorder (mkTree xs)

First, the original list xs is used to build a search tree by applying function
mkTree (not shown). The tree is traversed in inorder to produce the sorted list.
The tree is not part of the result of the function, so it will be built in the working
region and will die when the treesort function returns. The Core-Safe version
of treesort showing the inferred type and regions is the following:

treesort :: [a] @ rho1 -> rho2 -> [a] @ rho2

treesort xs @ r = let t = mkTree xs @ self

in inorder t @ r

Variable r of type rho2 is an additional argument in which treesort receives
the region where the output list should be built. This is passed to the inorder

function. However self is passed to mkTree to instruct it that the intermediate
tree should be built in treesort’s self region.

Data structures can also be destroyed by using a destructive pattern match-
ing, denoted by !, or by a case! expression, which deallocates the cell correspond-
ing to the outermost constructor. Using recursion, the recursive portions of the
whole data structure may be deallocated. As an example, we show a Full-Safe
insertion function in an ordered list, which reuses the argument list’s spine:

insertD x []! = x : []

insertD x (y:ys)! | x <= y = x : y : ys!

| x > y = y : insertD x ys!

Expression ys! means that the substructure pointed to by ys in the heap is
reused. The following is the (abbreviated) Core-Safe typed version:

insertD :: Int -> [Int]! @ rho -> rho -> [Int] @ rho
insertD x ys @ r = case! ys of

[] -> let zs = [] @ r in let us = (x:zs) @ r in us
y:yy -> let b = x <= y in case b of

True -> let ys1 = (let yy1 = yy! in let as = (y:yy1) @ r in as) in
let rs1 = (x:ys1) @ r in rs1

False -> let ys2 = (let yy2 = yy! in insertD x yy2 @ r) in
let rs2 = (y:ys2) @ r in rs2

This function will run in constant heap space since, at each call, a cell is destroyed
while a new one is allocated at region r by the (:) constructor. Only when the
new element finds its place a new cell is allocated in the heap.

In Fig. 1 we show two Core-Safe big-step semantic rules in which a resource
vector is obtained as a side effect of evaluating an expression. A judgement has
the form E ` h, k, td , e ⇓ h′, k, v, (δ,m, s) meaning that expression e is evaluated
in an environment E using the td topmost positions in the stack, and in a heap
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E ` h, k, 0, e1 ⇓ h′, k, v1, (δ1,m1, s1)
E ] [x1 7→ v1] ` h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2,m2, s2)

E ` h, k, td , let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2,max{m1, |δ1|+m2},max{2 + s1, 1 + s2})
[Let1 ]

E x = p C = Cr E ] [xri 7→ vi
nr ] ` h, k, td+ nr, er ⇓ h′, k, v, (δ,m, s)

E ` h ] [p 7→ (j, C vi
n)], k, td , case! x of Ci xijni → ei

n ⇓ h′, k, v, (δ + [j 7→ −1],max{0,m− 1}, s+ nr)
[Case!]

Fig. 1. Two rules of the resource-aware operational semantics of Safe

(h, k) with 0..k active regions. As a result, a heap (h′, k) and a value v are
obtained, and a resource vector (δ,m, s) is consumed. A heap h is a mapping
between pointers and constructor cells (j, C vi

n), where j is the cell region. The
first component of the resource vector is a partial function δ : N→ Z giving for
each active region i the signed difference between the cells in the final and initial
heaps. A positive difference means that new cells have been created in this region.
A negative one, means that some cells have been destroyed. By dom(δ) we denote
the subset of N in which δ is defined. By |δ| we mean the sum

∑
n∈dom(δ) δ(n)

giving the total balance of cells. The remaining components m and s respectively
give the minimum number of fresh cells in the heap and of words in the stack
needed to successfully evaluate e. When e is the main expression, these figures
give us the total memory needs of a particular run of the Safe program. For a
full description of the semantics and the abstract machine see [11].

3 Function Signatures

A Core-Safe function is defined as a n+m argument expression:

f :: t1 → . . . tn → ρ1 → . . . ρm → t
f x1 · · ·xn @ r1 · · · rm = ef

A function may charge space costs to heap regions and to the stack. In general,
these costs depend on the sizes of the function arguments, where the size of a
term of an algebraic type is the number of cells of its recursive spine, the size of a
natural number is its value, and the size of a boolean value is zero. For example,

copy xs @ r = case xs of [] -> [] @ r

y:ys -> let zs = copy ys @ r in

let rs = (x:zs) @ r in rs

charges as many cells to region r as the length of its input list.
As a consequence, all the space costs and needs of f can be expressed as n-

ary functions η : (R+∪{+∞})n → R∪{+∞,−∞}. Infinite costs will be used to
represent that we are not able to infer a bound (either because it does not exist
or because the analysis is not capable). Costs can be negative if the function
destroys more cells than it builds. Currently we are restricting ourselves to func-
tions where for each destructed cell at least a new cell is built in the same region.
This covers many interesting functions where the aim of cell destruction is space
reuse instead of pure destruction, e.g. function insertD shown in the previous
section. This restriction means that the domain of the space cost functions is
the following:
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F = {η : (R+ ∪ {+∞})n → R+ ∪ {+∞} | η is monotonic}

The domain (F,v,⊥,>,t,u) is a complete lattice, where v is the usual order
between functions, and the rest of components are standard. Notice that it is
closed by the operations {+,t, ∗}. By abuse of notation we abbreviate λxin.c
by just c, where c ∈ R+.

Function f above may charge space costs to a maximum of n+m+1 regions: It
may destroy cells in the regions where x1 . . . xn live; it may create/destroy cells in
any output region r1 . . . rm, and additionally in its self region. Each region r has
a region type ρ. We denote by Rfin the set of input region types, and by Rfout the
set of output region types. For example, Rtreesort

in = {ρ1} and Rtreesort
out = {ρ2}.

Looked from outside, the charges to the self region are not visible, as this region
disappears when the function returns.

Summarising, let Rf = Rfin ∪R
f
out. Then D = {∆ : Rf → F} is the complete

lattice of functions that describe the space costs charged by f to every visible
region. In the following we will call abstract heaps to the functions ∆ ∈ D.

Definition 1. A function signature for f is a triple (∆f , µf , σf ), where ∆f

belongs to D, and µf , σf belong to F.

The aim is that ∆f describes (an upper bound to) the space costs charged
by f to every visible region, and µf , σf respectively describe (an upper bound
to) the heap and stack needs of f in order to execute it without running out of
space. By [ ]f we denote the empty function λρ.λxin.0, where we assume ρ ∈ Rf .
By |∆| we mean

∑
ρ∈dom(∆)∆ ρ.

4 Abstract Interpretation

In Figure 2 we show the abstract interpretation rules for the most relevant Core-
Safe expressions. There, an atom a represents either a variable x or a constant
c, and |e| denotes the function obtained by the size analysis for expression e. We
can assume that the abstract syntax tree is decorated with such information.

When inferring an expression e, we assume it belongs to the body of a func-
tion definition f xin @ rj

m = ef , that we will call the context function, and that
only already inferred functions g yil @ rj

q = eg are called. Let Σ be a global
environment giving, for each Safe function g in scope, its signature (∆g, µg, σg),
let Γ be a typing environment containing the types of all the variables appearing
in ef , and let td be a natural number. The abstract interpretation [[e]] Σ Γ td
gives a triple (∆,µ, σ) representing the space costs and needs of expression e.
The statically determined value td occurring as an argument of the interpreta-
tion and used in rule App is the size of the top part of the environment used
when compiling the expression g ai

l @ rj
q. This size is also an argument of the

operational semantics. See [11] for more details.
Rules [Atom] and [Primop] exactly reflect the corresponding resource-aware

semantic rules [11]. When a function application g ail @ rj
q is found, its signature

Σ g is applied to the sizes of the actual arguments, |ai| xjn
l

which have the
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[[a]] Σ Γ td = ([ ]f , 0, 1) [Atom]

[[a1 ⊕ a2]] Σ Γ td = ([ ]f , 0, 2) [Primop]

Σ g = (∆g, µg, σg) θ = unify Γ g ai
l rj

q

µ = λxn.µg (|ai| xn
l
) σ = λxn.σg (|ai| xn

l
) ∆ = θ ↓|ai| xnl ∆g

[[g ai
l @ rj

q]] Σ Γ td = (∆,µ,t{l + q, σ − td + l + q})
[App]

[[e1]] Σ Γ 0 = (∆1, µ1, σ1) [[e2]] Σ Γ (td + 1) = (∆2, µ2, σ2)

[[let x1 = e1 in e2]] Σ Γ td = (∆1 +∆2,t{µ1, |∆1|+ µ2},t{2 + σ1, 1 + σ2})
[Let1 ]

Γ r = ρ [[e2]] Σ Γ (td + 1) = (∆,µ, σ)

[[let x1 = C ai
n @ r in e2]] Σ Γ td = (∆+ [ρ 7→ 1], µ+ 1, σ + 1)

[Let2 ]

(∀i) [[ei]] Σ Γ (td + ni) = (∆i, µi, σi)

[[case x of Ci xijni → ei
n
]] Σ Γ td = (

Fn
i=1∆i,

Fn
i=1 µi,

Fn
i=1(σi + ni))

[Case]

Γ x = Ttk
l
@ρ (∀i) [[ei]] Σ Γ (td + ni) = (∆i, µi, σi)

[[case! x of Ci xijni → ei
n
]] Σ Γ td = ([ρ 7→ −1] +

Fn
i=1∆i,t(0,

Fn
i=1 µi − 1),

Fn
i=1(σi + ni))

[Case!]

Fig. 2. Space inference rules for expressions with non-recursive applications

xn as free variables. Due to the application, some different region types of g
may instantiate to the same actual region type of f . That means that we must
accumulate the memory consumed in some formal regions of g in order to get
the charge to an actual region of f . In Figure 2, unify Γ g ai

l rj
q computes

a substitution θ from g’s region types to f ’s region types. If θ ρg = ρf , this
means that the generic g’s region type ρg is instantiated to the f ’s actual region
type ρf . Formally, if Rg = Rgin ∪ R

g
out then θ :: Rg → Rf ∪ {ρself } is total. The

extension of region substitutions to types is straightforward.

Definition 2. Given a type environment Γ , a function g and the sequences ail

and rjq, we say that θ = unify Γ g ai
l rj

q iff

Γ g = ∀α.til → ρj
q → t and ∀i ∈ {1 . . . l}.θ ti = Γ ai and ∀j ∈ {1 . . . q}.θ ρj = Γ rj

As an example, let us assume g :: ([a]@ρg1, [[b]@ρ
g
2]@ρg1)@ρg3 → ρg2 → ρg4 → ρg5 → t

and consider the application g p @ r2 r1 r1 where p :: ([a]@ρf1 , [[b]@ρ
f
2 ]@ρf1 )@ρf1 ,

r1 :: ρf1 and r2 :: ρf2 . The resulting substitution would be:

θ = [ρg1 7→ ρf1 , ρ
g
2 7→ ρf2 , ρ

g
3 7→ ρf1 , ρ

g
4 7→ ρf1 , ρ

g
5 7→ ρf1 ]

The function θ ↓
ηi xnl ∆g converts an abstract heap for g into an abstract

heap for f . It is defined as follows:

θ ↓
ηi xj

nl ∆g = λρ . λxj
n.
∑
ρ′∈Rg

θ ρ′=ρ

∆g ρ
′ ηi xj

nl (ρ ∈ Rf ∪ {ρself }, ηi ∈ F)

In the example, we have:

∆ ρf2 = λxn.∆g ρ
g
2 (|ai| xn)

l

∆ ρf1 = λxn.∆g ρ
g
1 (|ai| xn)

l
+∆g ρ

g
3 (|ai| xn)

l
+∆g ρ

g
4 (|ai| xn)

l
+∆g ρ

g
5 (|ai| xn)

l
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Rules [Let1 ] and [Let2 ] reflect the corresponding resource-aware semantic
rules in [11]. Rules [Case] and [Case!] use the least upper bound operators

⊔
in

order to obtain an upper bound to the charge costs and needs of the alternatives.

5 Correctness of the Abstract Interpretation

Let f xi
n @ rj

m = ef , be the context function, which we assume well-typed
according to the type system in [12]. Let us assume an execution of ef under
some E0, h0, k0 and td0:

E0 ` h0, k0, td0, ef ⇓ hf , k0, vf , (δ0,m0, s0) (1)

In the following, all ⇓–judgements corresponding to a given sub-expression of ef
will be assumed to belong to the derivation of (1).

The correctness argument is split into three parts. First, we shall define a
notion of correct signature which formalises the intuition of the inferred (∆,µ, σ)
being an upper bound of the actual (δ,m, s). Then we prove that the inference
rules of Figure 2 are correct, assuming that all function applications are done to
previously inferred functions, that the signatures given by Σ for these functions
are correct, and that the size analysis is correct. Finally, the correctness of the
signature inference algorithm is proved, in particular when the function being
inferred is recursive.

In order to define the notion of correct signature we have to give some pre-
vious definitions. We consider region instantiations, denoted by Reg , Reg ′, . . .,
which are partial mappings from region types ρ to natural numbers i. Region
instantiations are needed to specify the actual region i to which every ρ is in-
stantiated at a given execution point. A instantiation Reg is consistent with a
heap h, an environment E and a type environment Γ if Reg does not contradict
the region instantiation obtained at runtime from h, E and Γ , i.e. common type
region variables are bound to the same actual region. Formal definition of consis-
tency can be found in [12], where we also proved that if a function is well-typed,
consistency of region instantiations is preserved along its execution.

Definition 3. Given a pointer p belonging to a heap h, the function size returns
the number of cells in h of the data structure starting at p:

size(h[p 7→ (j, C vi
n)], p) = 1 +

∑
i∈RecPos(C )

size(h, vi)

where RecPos(C) denotes the recursive positions of constructor C.

We assume that size(h, c) = 0 for every heap h and constant c.

Definition 4. Given a sequence of sizes sin for the input parameters, a number
k of regions and a region instantiation Reg, we say that

• ∆ is an upper bound for δ in the context of sin, k and Reg, denoted by
∆ �si

n,k,Reg δ iff ∀j ∈ {0 . . . k} :
∑

Reg ρ=j ∆ ρ si
n ≥ δ j;

• µ is an upper bound for m, denoted µ �si
n m, iff µ si

n ≥ m; and
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• σ is an upper bound for s, denoted σ �si
n s, iff σ si

n ≥ s.

Definition 5 (Correct signature). Let (∆g, µg, σg) the signature of a func-
tion definition g yi

l @ r′j
q

= eg. This signature is said to be correct iff for all h,
h′, k, vil, ij

q
, v, δ, m, s, Γ , t such that:

1. Eg = [yi 7→ vi
l, r′j 7→ ij

q
, self 7→ k+1] ` h, k+1, l+q, eg ⇓ h′, k+1, v, (δ,m, s).

2. Γg ` eg : t
3. ∀i ∈ {1 . . . l} : si = size(h, vi)

then ∆g �si
l,k,Reg δ|k ∧ µg �si

l m ∧ σg �si
l s for every region instantiation

Reg consistent with h, Eg and Γg.

The following theorem establishes the correctness of the abstract interpreta-
tion for non-recursive functions.

Theorem 1. Let f a non-recursive context function. For each subexpression e
of ef and E, Σ, Γ , td, ∆, µ, σ, h, ,h′, v, ,t, δ, m and s such that:

1. Every function call g ail @ r′j
q

in e satisfies g ∈ dom Σ and Σ(g) is correct
2. [[e]] Σ Γ td = (∆,µ, σ)
3. E ` h, k0, td , e ⇓ h′, k0, v, (δ,m, s), belonging to (1)
4. Γ ` e : t

then ∆ �si
n,k0,Reg δ, µ �si

n m and σ �si
n s, where si = size(h,E0 xi) for each

i ∈ {1 . . . n}, and each region instantiation Reg consistent with h, E and Γ such
that dom Reg = dom ∆.

Proof. By structural induction on e. The proof uses the fact that the size func-
tions are monotonic, and relies on the correctness of the size analysis. ut

In order to prove the correctness of the algorithms shown in the following sec-
tion for recursive functions we need the abstract interpretation to be monotonic
with respect to function signatures.

Lemma 1. Let f be a context function. Given Σ1, Σ2, Γ , and td such that
Σ1 v Σ2, then [[e]] Σ1 Γ td v [[e]] Σ2 Γ td.

Proof. By structural induction on e, because + and t are monotonic. ut

6 Space Inference Algorithms

Given a recursive function f with n+m arguments, the algorithms for inferring
∆f and σf do not depend on each other, while the algorithm for inferring µf
needs a correct value for ∆f . We will assume that µf , σf , and the cost functions
in ∆f , do only depend on arguments of f non-increasing in size. The consequence
of this restriction is that the costs charged to regions, or to the stack, by the most
external call to f are safe upper bounds to the costs charged by all the lower
level internal calls. This restriction holds for the majority of programs occurring
in the literature. Of course, it is always possible to design an example where the
charges grow as we progress towards the leafs of the call-tree.

We assume that, for every recursive function f , there has been an analysis
giving the following information as functions of the argument sizes xin:
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splitExpf [[e]] = (e,#) if e = c, x, C ai
n @ r, or g ai

n @ rj
m with g 6= f

splitExpf [[f ai
n @ rj

m]] = (#, f ai
n @ rj

m)
splitExpf [[let x1 = e1 in e2]] = (eb, er)

where (e1b, e1r) = splitExpf [[e1]]
(e2b, e2r) = splitExpf [[e2]]

eb =


# if e1b = # or e2b = #
let x1 = e1b in e2b otherwise

er =

8>>>><>>>>:
# if e1r = # and e2r = #
let x1 = e1 in e2r if e1r = # and e2r 6= #
let x1 = e1r in e2 if e1r 6= # and e2r = #F let x1 = e1b in e2r

let x1 = e1r in e2

ff
otherwise

splitExpf [[case(!) x of alt i
n
]] = (eb, er)

where (alt ib
n
, alt ir

n
) = unzip (map splitAltf alt i

n
)

eb =


# if alt ib = #→ # for all i ∈ {1 . . . n}
case(!) x of alt ib

n
otherwise

er =


# if alt ir = #→ # for all i ∈ {1 . . . n}
case(!) x of alt ir

n
otherwise

splitAltf [[C xj
n → e]] = (altb, altr)

where (eb, er) = splitExpf e

altb =


#→ # if eb = #
C xj

n → eb otherwise

altr =


#→ # if er = #
C xj

n → er otherwise

Fig. 3. Function splitting a Core-Safe expression into its base and recursive cases

1. ncf , an upper bound to the number of calls to f .
2. bf f , the branching factor of f , i.e. maximum number of internal calls to f

for every external call. If bf f = 1 then f has linear recursion.
3. nrf , an upper bound to the number of calls to f invoking f again. It corre-

sponds to the internal nodes of f ’s call tree.
4. nbf , an upper bound to the number of basic calls to f . It corresponds to the

leaves of f ’s call tree.
5. lenf , an upper bound to the maximum length of f ’s call chains. It corre-

sponds to the height of f ’s call tree.

In general, these functions are not independent of each other. For instance, if
bf f = 1 then nrf = ncf − 1, nbf = 1, and lenf = ncf . However, we will not
assume a fixed relation between them. If this relation exists, it has been already
used to compute them. We will only assume that each function is a correct upper
bound to its corresponding runtime figure.

6.1 Splitting Core-Safe expressions

In order to do a more precise analysis, we separately analyse the base and the
recursive cases of a Core-Safe function definition. Fig. 3 describes the functions
splitExp and splitAlt which, given a Safe expression return the part of its body
contributing to the base cases and the part contributing to the recursive cases.
We introduce an empty expression # in order not to lose the structure of the
original one when some parts are removed. These empty expressions charge null
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splitBAf [[e]] = [ ] if e = #, c, x, C ai
n @ r, or g ai

n @ rj
m with g 6= f

splitBAf [[tni=1ei]] = concat [splitBA ei | i ∈ {1 . . . n}]
splitBAf [[f ai

n @ rj
m]] = [(f ai

n @ rj
m,#)]

splitBAf [[let x1 = e1 in e2]] = A++ B
where (e1b, e1r) = splitExpf [[e1]]

(e2b, e2r) = splitExpf [[e2]]
e1r,split = splitBA [[e1r]]
e2r,split = splitBA [[e2r]]
A = [(let x1 = e1 in e2r,b,

let x1 = # in e2r,a) | (e2r,b, e2r,a) ∈ e2r,split ]

B =

8<:
[ ] if e2b = #
[(let x1 = e1r,b in #,

let x1 = e1r,a in e2b) | (e1r,b, e1r,a) ∈ e1r,split ] otherwise

splitBAf [[case(!) x of Ci xijni → ei
n
]] =ˆ`

case(!) x of Ci xijni → ei,b
n
, case(!) x of Ci xijni → ei,a

n´
| (e1,b, e1,a) ∈ splitBAf [[e1]], . . . , (en,b, en,a) ∈ splitBAf [[en]]

˜
Fig. 4. Function splitting a Core-Safe expression into its parts executing before and
after the last recursive call

costs to both the heap and the stack. Since it might be not possible to split
a expression into a single pair with the base and recursive cases, we introduce
expressions of the form tei, whose abstract interpretation is the upper bound to
each single interpretation for ei. It will also be useful to define another function
which splits a Core-Safe expression into those parts that execute before and
including the last recursive call, and those executed after the last recursive call,
In Fig. 4 we define such function, called splitBAf . In Fig. 5 we show a Full-Safe
definition for a function split splitting a list, and the result of applying splitExp
and splitBA to its Core-Safe version.

6.2 Algorithm for computing ∆f

If ef is f ’s body, let (er, eb) = splitExpf [[ef ]] and (ebef , eaft) = (
⊔
i e

i
bef ,

⊔
i e

i
aft),

where [(eibef , e
i
aft)

n
] = splitBAf [[er]]. The idea here is to separately compute the

charges to regions of the recursive and non-recursive parts of f ’s body, and then
multiply these charges by respectively the number of internal and leaf nodes of
f ’s call-tree.

1. Set Σ f = ([ ]f , 0, 0).
2. Let (∆r, , ) = [[er]] Σ Γ (n+m)
3. Let (∆b, , ) = [[eb]] Σ Γ (n+m)
4. Then, ∆f

def= ∆r |ρ6=ρself
×nrf +∆b |ρ 6=ρself

×nbf .

Lemma 2. If nrf ,nbf , and all the size functions belong to F, then all functions
in ∆f belong to F.

Lemma 3. ∆f is a correct abstract heap for f .

Proof. This is a consequence of nrf , nbf , and all the size functions being upper
bounds of their respective runtime figures, and of ∆r, ∆b being upper bounds
of respectively the f ’s call-tree internal and leaf nodes heap charges. ut
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split 0 xs = ([],xs)
split n [] = ([],[])
split n (x:xs) = (x:xs1,xs2)

where (xs1,xs2) = split (n-1) xs

split n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = let x6 = - n 1 in

split x6 y2 @ r1 r2 r3 in #

(Full-Safe version, and Core-Safe up to the last call)

split n xs @ r1 r2 r3 =
case n of
0 -> let x1 = [] @ r2 in

let x2 = (x1,xs) @ r3 in x2
_ -> case xs of

[] -> let x4 = [] @ r2 in
let x3 = [] @ r1 in
let x5 = (x4,x3) @ r3 in x5

(Core-Safe base cases)

split n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = let x6 = - n 1 in

split x6 y2 @ r1 r2 r3 in
let xs1 = case y3 of (y4,y5) -> y4 in
let xs2 = case y3 of (y6,y7) -> y7 in
let x7 = (: y1 xs1) @ r2 in
let x8 = (x7,xs2) @ r3 in x8

(Core-Safe recursive cases)

split n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = # in
let xs1 = case y3 of (y4,y5) -> y4 in
let xs2 = case y3 of (y6,y7) -> y7 in
let x7 = (: y1 xs1) @ r2 in
let x8 = (x7,xs2) @ r3 in x8

(Core-Safe after the last call)

Fig. 5. Splitting a Core-Safe definition

Let us call I∆ : D → D to an iteration of the interpretation function, i.e.
I∆(∆1) = ∆2, being ∆2 the abstract heap obtained by initially setting Σ f =
(∆1, 0, 0), then computing (∆, , ) = [[er]] Σ Γ (n+m), and then defining ∆2 =
∆ |ρ6=ρself

.

Lemma 4. For all n, In∆(∆f ) is a correct abstract heap for f .

Proof. This is a consequence of D being a complete lattice, I∆ being monotonic
in D, and I∆(∆f ) v ∆f . As I∆ is reductive at ∆f then, by Tarski’s fixpoint
theorem, In∆(∆f ) is above the least fixpoint of I∆ for all n. ut

As the algorithm for µf critically depends on how good is the result for ∆f ,
it is advisable to spend some time iterating the interpretation I∆ in order to get
better results for µf .

6.3 Algorithm for computing µf

First, we infer the part of µf due to space charges to the self region of f . Let us
call it µself

f . As the self regions for f are stacked, this part only depends on the
longest f ’s call chain, i.e. on the height of the call-tree.

1. Set Σ f = ([ ]f , 0, 0).
2. Let ([ρself 7→ µbef ], , ) = [[ebef ]] Σ Γ (n+m), i.e. the charges to ρself made

by the part of f ′s body before (and including) the last recursive call.
3. Let ([ρself 7→ µaft ], , ) = [[eaft ]] Σ Γ (n+m), i.e. the charges to ρself made

by the part of f ′s body after the last recursive call.
4. Let ([ρself 7→ µb ], , ) = [[eb ]] Σ Γ (n+m), i.e. the charges to ρself made by

the non-recursive part of f ′s body.

11



5. Then, µself
f

def= µbef × (lenf − 1) + t{µb, µaft}.

Now, the inference of µf is done by provisionally assuming a signature for f in
which f ’s heap needs are at least those due to charges to self, plus those due to
charges to other regions. The latter are recorded in ∆f .

1. Let µprov
def= |∆f | +µself

f

2. Set Σ f = (∆f , µprov , 0).
3. Then, ( , µf , ) = [[ef ]] Σ Γ (n+m).

Lemma 5. If the functions in ∆f , lenf , and the size functions belong to F, then
µf belongs to F.

Lemma 6. µf is a safe upper bound for f ’s heap needs.

Proof. This is a consequence of the correctness of the abstract interpretation
rules, and of ∆f , lenf , and the size functions being upper bounds of their re-
spective runtime figures. ut

As in the case of ∆f , we can define an interpretation Iµ taking any upper bound
µ1 as input, and producing a better one µ2 = Iµ(µ1) as output.

Lemma 7. For all n, Inµ(µf ) is a safe upper bound for f ’s heap needs.

Proof. This is a consequence of F being a complete lattice, Iµ being monotonic
in F, and Iµ being reductive at µf . ut

6.4 Algorithm for computing σf

The algorithm for inferring µf traverses f ’s body from left to right because the
abstract interpretation rules for µ need the charges to the previous heaps. For
inferring σf we can do it better because its rules are symmetrical. The main idea
is to count only once the stack needs due to calling to external functions.

1. Let ( , , σb) = [[eb]] Σ Γ (n+m).
2. Let ( , , σbef ) = [[ebef ]] Σ[f 7→ ( , , σb)] Γ (n+m), i.e. the stack needs before

the last recursive call, assuming as f ’s stack needs those of the base case.
This amounts to accumulating the cost of a leaf to the cost of an internal
node of f ’s call tree.

3. Let ( , , σaft) = [[eaft ]] Σ Γ (n+m).
4. We define the following function S returning a natural number. Intuitively

it computes an upper bound to the difference in words between the initial
stack in a call to f and the stack just before ebef is about to jump to f again:

S [[let x1 = e1 in #]] td = 2 + S [[e1]] 0

S [[let x1 = e1 in e2]] td =
{

1 + S [[e2]] (td + 1) if f /∈ e1
t{2 + S [[e1]] 0, 1 + S [[e2]] (td + 1)} if f ∈ e1

S [[case x of Ci xijni → ei
n
]] td =

⊔n
r=1(nr + S [[er]] (td + nr))

S [[g aip @ rj
q]] td = p+ q − td

S [[e]] td = 0 otherwise

12



length [] = 0
length (x:xs) = 1 + length xs

split :: Int → [a]@ρ1 → ρ1 → ρ2 → ρ3 → ([a]@ρ2, [a]@ρ1)@ρ3
length :: [a]@ρ1 → Int
merge :: [a]@ρ1 → [a]@ρ1 → ρ1 → [a]@ρ1
msort :: [a]@ρ1 → ρ1 → ρ2 → [a]@ρ2

merge [] ys = ys
merge (x:xs) [] = x : xs
merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)
| x > y = y : merge (x:xs) ys

msort [] = []
msort (x:[]) = x:[]
msort xs = merge (msort xs1) (msort xs2)

where (xs1,xs2) = split (length xs / 2) xs

Fig. 6. Full-Safe mergesort program

Function Heap charges ∆ Heap needs µ Stack needs σ

length(x) [ ] 0 5x− 4

split(n, x)

2664
ρ1 7→ 1

ρ2 7→ min(n, x− 1) + 1

ρ3 7→ min(n, x− 1) + 1

3775 2 min(n, x− 1) + 3 9 min(n, x− 1) + 4

merge(x, y)
h
ρ1 7→ max(1, 2x+ 2y − 5)

i
max(1, 2x+ 2y − 5) 11(x+ y − 4) + 20

msort1(x)

»
ρ1 7→ x2

2
− 1

2

ρ2 7→ 2x2 − 3x+ 3

–
0.31x2 + 0.25x log(x+ 1) + 14.3x

+ 0.75 log(x+ 1) + 10.3
max(80, 13x− 10)

msort2(x)

»
ρ1 7→ x2

4
+ x− 1

4

ρ2 7→ x2 + x+ 1

–
0.31x2 + 8.38x+ 13.31 max(80, 11x− 25)

msort3(x)

"
ρ1 7→ x2

8
+ 7x

4
+ 9

8

ρ2 7→ x2

2
+ 4x+ 1

2

#
0.31x2 + 8.38x+ 13.31 max(80, 11x− 25)

Fig. 7. Cost results for the mergesort program

5. Then, σf = (S [[ebef ]] (n+m)) ∗ t{0, lenf − 2}+ t{σbef , σaft , σb}

Lemma 8. If lenf , and all the size functions belong to F, then σf belongs to F.

Lemma 9. σf is a safe upper bound for f ’s stack needs.

Proof. This is a consequence of the correctness of the abstract interpretation
rules, and of lenf being an upper bound to f ’s call-tree height. ut

Also in this case, it makes sense iterating the interpretation as we did with ∆f

and µf , since it holds that Iσ(σf ) v σf .

7 Case Studies

In Fig. 6 we show a Full-Safe version of the mergesort algorithm (the code for
split was presented in Fig. 5) with the types inferred by the compiler. Region ρ1

is used inside msort for the internal call split n’ xs @ r1 r1 self, while region
ρ2 receives the charges made by merge. Notice that some charges to msort’s self
region are made by split. In Fig. 7 we show the results of our interpretation
for this program as functions of the argument sizes. Remember that the size of a
list (the number of its cells) is the list length plus one. The functions shown have
been simplified with the help of a computer algebra tool. We show the fixpoints
framed in grey. The upper bounds obtained for length, split, and merge are
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Function Heap needs µ Stack needs σ

partition(p, x) 3x − 1 9x − 5

append(x, y) x − 1 max(8, 7x− 6)

quicksort(x) 3x2 − 20x+ 76 max(40, 20x− 27)

insertD(e, x) 1 9x− 1

insertTD(x, t) 2 11
2
t+ 7

2

fib(n) 2n + 2n−3 + 2n−4 − 3 max(10, 7n− 11)

sum(n) 0 3n+ 6

sumT (a, n) 0 5

Fig. 8. Cost results for miscellaneous Safe functions

sum 0 = 0
sum n = n + sum (n - 1)

sumT acc 0 = acc
sumT acc n = sumT (acc + n) (n - 1)

insertTD x Empty! = Node (Empty) x (Empty)
insertTD x (Node lt y rt)!

| x == y = Node lt! y rt!
| x > y = Node lt! y (insertTD x rt)
| x < y = Node (insertTD x lt) y rt!

Fig. 9. Two summation functions and a destructive tree insertion function

exact and they are, as expected, fixpoints of the inference algorithm. For msort

we show three iterations for ∆ and σ, and another three for µ by using the
last ∆. The upper bounds for ∆ and µ are clearly over-approximated, since a
term in x2 arises which is beyond the actual space complexity class O(x log x) of
this function. Let us note that the quadratic term’s coefficient quickly decreases
at each iteration in the inference of ∆. Also, µ and σ decrease in the second
iteration but not in the third. This confirms the predictions of lemmas 4 and 7.

We have tried some more examples and the results inferred for µ and σ
after a maximum of three iterations are shown in Fig. 8, where the fixpoints are
also framed in grey. There is a quicksort function using two auxiliary functions
partition and append respectively classifying the list elements into those lower
(or equal) and greater than the pivot, and appending two lists. We also show the
destructive insertD function of Sec. 2, and a destructive version of the insertion
in a search tree (its code is shown in Fig. 9). Both consume constant heap
space. The next one shown is the usual Fibonacci function with exponential time
cost, and using a constructed integer in order to show that an exponential heap
space is inferred. Finally, we show two simple summation functions (its code
also appears in Fig. 9), the first one being non-tail recursive, and the second
being tail-recursive. Our abstract machine consumes constant stack space in the
second case (see [11]). It can be seen that our stack inference algorithm is able
to detect this fact.

8 Related and Future Work

Hughes and Pareto developed in [7] a type system and a type-checking algorithm
which guarantees safe memory upper bounds in a region-based first-order func-
tional language. Unfortunately, the approach requires the programmer to provide
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detailed consumption annotations, and it is limited to linear bounds. Hofmann
and Jost’s work [6] presents a type system and a type inference algorithm which,
in case of success, guarantees linear heap upper bounds for a first-order func-
tional language, and it does not require programmer annotations.

The national project AHA [15] aims at inferring amortised costs for heap
space by using a variant of sized-types [8] in which the annotations are poly-
nomials of any degree. They address two novel problems: polynomials are not
necessarily monotonic and they are exact bounds, as opposed to approximate
upper bounds. Type-checking is undecidable in this system and in [16, 14] they
propose an inference algorithm for a list-based functional language with severe
restrictions in which a combination of testing and type-checking is done. The
algorithm does not terminate if the input-output size relation is not polynomial.

In [2], the authors directly analyse Java bytecode and compute safe upper
bounds for the heap allocation made by a program. The approach uses the
results of [1], and consists of combining a code transformation to an intermediate
representation, a cost relations inference step, and a cost relations solving step.
The second one combines ranking functions inference and partial evaluation.
The results are impressive and go far beyond linear bounds. The authors claim
to deal with data structures such as lists and trees, as well as arrays. Two
drawbacks compared to our results are that the second step performs a global
program analysis (so, it lacks modularity), and that only the allocated memory
(as opposed to the live memory) is analysed. Very recently [3] they have added
an escape analysis to each method in order to infer live memory upper bounds.
The new results are very promising.

The strengths of our approach can be summarised as follows: (a) It scales
well to large programs as each Safe function is separately inferred. The relevant
information about the called functions is recorded in the signature environment;
(b) We can deal with any user-defined algebraic datatype. Most of other ap-
proaches are limited to lists; (c) We get upper bounds for the live memory, as
the inference algorithms take into account the deallocation of dead regions made
at function termination; (d) We can get bounds of virtually any complexity class;
and (e) It is to our knowledge the only approach in which the upper bounds can
be easily improved just by iterating the inference algorithm.

The weak points that still require more work are the restrictions we have im-
posed to our functions: they must be non-negative and monotonic. This exclude
some interesting functions such as those that destroy more memory than they
consume, or those whose output size decreases as the input size increases. An-
other limitation is that the arguments of recursive Safe functions related to heap
or stack consumption must be non-increasing. This limitation could be removed
in the future by an analysis similar to that done in [1] in which they maximise the
argument sizes across a call-tree by using linear programming tools. Of course,
this could only be done if the size relations are linear.

Another open problem is inferring Safe functions with region-polymorphic
recursion. Our region inference algorithm [13] frequently infers such functions,
where the regions used in an internal call may differ from those used in the exter-
nal one. This feature is very convenient for maximising garbage (i.e. allocations
to the self region) but it makes more difficult the attribution of costs to regions.
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