Up to index of Isabelle/HOL/SafeImp
theory SafeRASemantics(* Title: Resource-Aware Safe Semantics Author: Ricardo Peņa and Javier de Dios Copyright: May 2008, Universidad Complutense de Madrid *) header {* Resource-Aware Operational semantics of Safe expressions *} theory SafeRASemantics imports SafeExpr "../SafeImp/SVMState" begin types Delta = "(Region \<rightharpoonup> int)" MinimumFreshCells = int MinimumWords = int Resources = "Delta × MinimumFreshCells × MinimumWords" constdefs sizeVal :: "[HeapMap, Val] => int" "sizeVal h v ≡ (case v of (Loc p) => int p | _ => 0)" constdefs size :: "[HeapMap, Location] => int" where "size h p ≡ (case h p of Some (j,C,vs) => (let rp = getRecursiveValuesCell (C,vs) in 1+ (∑i∈rp. sizeVal h (vs!i))))" constdefs balanceCells :: "Delta => int" ("\<parallel> _ \<parallel>" [71] 70) "balanceCells δ ≡ (∑n∈ran δ. n)" constdefs addDelta :: "Delta => Delta => Delta" (infix "⊕" 110) "addDelta δ1 δ2 ≡ (%x. (if x ∈ dom δ1 ∩ dom δ2 then (case δ1 x of (Some y) => case δ2 x of (Some z) => Some (y + z)) else if x ∈ dom δ1 - dom δ2 then δ1 x else if x ∈ dom δ2 - dom δ1 then δ2 x else None))" constdefs emptyDelta :: "nat => nat \<rightharpoonup> int" ( "[]_" [71] 70) "[]k ≡ (%i. if i ∈ {0..k} then Some 0 else None)" inductive SafeRASem :: "[Environment ,HeapMap, nat, nat, 'a Exp, HeapMap, nat, Val, Resources ] => bool" ( "_ \<turnstile> _ , _ , _ , _ \<Down> _ , _ , _ , _ " [71,71,71,71,71,71,71] 70) where litInt : "E \<turnstile> h, k, td, (ConstE (LitN i) a) \<Down> h, k, IntT i,([]k,0,1)" | litBool: "E \<turnstile> h , k, td, (ConstE (LitB b) a) \<Down> h, k, BoolT b,([]k,0,1)" | var1 : "E1 x = Some (Val.Loc p) ==> (E1,E2) \<turnstile> h, k, td, (VarE x a) \<Down> h, k, Val.Loc p,([]k,0,1)" | var2 : "[|E1 x = Some (Val.Loc p); E2 r = Some j; j <= k; m > 0; SafeHeap.copy (h,k) j p = ((h',k),p'); m = size h p|] ==> (E1,E2) \<turnstile> h, k , td, (x @ r a)\<Down> h', k, Val.Loc p',([j \<mapsto> m],m,2)" | var3 : "[|E1 x = Some (Val.Loc p); h p = Some c; SafeHeap.fresh q h |] ==> (E1,E2) \<turnstile> h, k, td, (ReuseE x a)\<Down> ((h(p:=None))(q \<mapsto> c)),k ,Val.Loc q,([]k,0,1)" | let1 : "[| ∀ C as r a'. e1 ≠ ConstrE C as r a'; x1 ∉ dom E1; ∀ h' v1. (E1,E2) \<turnstile> h,k,0,e1\<Down> h',k,v1,(δ1,m1,s1) ∧ (E1(x1 \<mapsto> v1),E2) \<turnstile> h',k,(td+1),e2\<Down>h'',k,v2,(δ2,m2,s2) |] ==> (E1,E2) \<turnstile> h,k, td, Let x1 = e1 In e2 a\<Down>h'',k,v2,(δ1⊕δ2,max m1 (m2 + \<parallel>δ1\<parallel>),max (s1+2) (s2+1))" | let2 : "[| E2 r = Some j; j ≤ k; fresh p h; x1 ∉ dom E1; r ≠ self; (E1(x1 \<mapsto> Val.Loc p),E2) \<turnstile> h(p \<mapsto> (j,(C,map (atom2val E1) as))),k, (td+1),e2\<Down>h',k,v2,(δ,m,s) |] ==> (E1,E2) \<turnstile> h,k, td, Let x1 = ConstrE C as r a' In e2 a\<Down>h',k,v2,(δ⊕(empty(j\<mapsto>1)),m+1,s+1)" | case1: "[|( ∀ p E1' xs vs j C. i < length alts ∧ E1 x = Some (Val.Loc p) ∧ h p = Some (j,C,vs) ∧ alts!i = (pati, ei) ∧ pati = ConstrP C ps ms ∧ xs = map pat2var ps ∧ E1' = extend E1 xs vs ∧ def_extend E1 xs vs ∧ nr = int (length vs) ∧ (E1',E2) \<turnstile> h,k, nat ((int td)+ nr), ei \<Down> h',k,v,(δ,m,s))|] ==> (E1,E2) \<turnstile> h,k, td, Case (VarE x a) Of alts a' \<Down> h', k,v,(δ,m, (s+nr))" | case1_1: "[|( ∀ n. i < length alts ∧ E1 x = Some (IntT n) ∧ alts!i = (pati, ei) ∧ pati = ConstP (LitN n) ∧ (E1,E2) \<turnstile> h,k, td, ei \<Down> h',k,v,(δ,m,s))|] ==> (E1,E2) \<turnstile> h,k, td, Case (VarE x a) Of alts a' \<Down> h', k,v,(δ,m,s)" | case1_2: "[|( ∀ b. i < length alts ∧ E1 x = Some (BoolT b) ∧ alts!i = (pati, ei) ∧ pati = ConstP (LitB b) ∧ (E1,E2) \<turnstile> h,k, td, ei \<Down> h',k,v,(δ,m,s))|] ==> (E1,E2) \<turnstile> h,k, td, Case (VarE x a) Of alts a' \<Down> h', k,v,(δ,m,s)" | case2: "[|( ∀ p E1' xs vs j C. i < length alts ∧ E1 x = Some (Val.Loc p) ∧ h p = Some (j,C,vs) ∧ alts!i = (pati, ei) ∧ pati = ConstrP C ps ms ∧ xs = map pat2var ps ∧ E1' = extend E1 xs vs ∧ def_extend E1 xs vs ∧ nr = int (length vs) ∧ j <= k ∧ (E1',E2) \<turnstile> h(p :=None),k, nat ((int td)+ nr), ei \<Down> h',k,v,(δ,m,s))|] ==> (E1,E2) \<turnstile> h,k, td, CaseD (VarE x a) Of alts a' \<Down> h', k,v,(δ⊕(empty(j\<mapsto>-1)),max 0 (m - 1),s+nr)" | app_primops: "[| primops f = Some oper; v1 = atom2val E1 a1; v2 = atom2val E1 a2; v = execOp oper v1 v2|] ==> (E1,E2) \<turnstile> h,k, td, AppE f [a1,a2] [] a \<Down> h, k,v,([]k,0,2)" | app: "[| Σ f = Some (xs,rs,e); primops f = None; E1' = map_of (zip xs (map (atom2val E1) as)); n = length xs; l = length rs; E2' = (map_of (zip rs (map (theoE2) rr))) (self \<mapsto> Suc k); (E1',E2') \<turnstile> h, (Suc k), (n+l), e\<Down> h', (Suc k),v,(δ,m,s)|] ==> (E1,E2) \<turnstile> h,k, td, AppE f as rr a \<Down> h' |` {p. p ∈ dom h' & fst (the (h' p)) ≤ k}, k,v, (δ(k+1:=None),m,max ((int n)+(int l)) (s+ (int n)+ (int l) - int td)) " end