(* Title: HOL/MicroJava/J/State.thy ID: $Id: State.thy,v 1.19 2007/09/30 19:55:17 wenzelm Exp $ Author: David von Oheimb Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{Program State} *} theory State imports TypeRel Value begin types fields_ = "(vname × cname \<rightharpoonup> val)" -- "field name, defining class to value" entries_ = "nat \<rightharpoonup> val" -- "array index to value" datatype heap_entry = Obj cname fields_ -- "class instance with class name and fields" | Arr ty nat entries_ -- "array with component type, length, and entries" constdefs obj_ty :: "heap_entry => ty" "obj_ty entry ≡ case entry of Obj C fs => Class C | Arr T len entries => T.[]" init_vars :: "('a × ty) list => ('a \<rightharpoonup> val)" "init_vars ≡ map_of o map (λ(n,T). (n,default_val T))" consts the_obj :: "heap_entry => cname × fields_" the_arr :: "heap_entry => ty × nat × entries_" recdef the_obj "{}" "the_obj (Obj C fs) = (C,fs)" recdef the_arr "{}" "the_arr (Arr T len entries) = (T,len,entries)" types aheap = "loc \<rightharpoonup> heap_entry" -- {* "@{text heap}" used in a translation below *} locals = "vname \<rightharpoonup> val" -- "simple state, i.e. variable contents" state = "aheap × locals" -- "heap, local parameter including This" xstate = "xcpt option × state" -- "state including exception information" syntax heap :: "state => aheap" locals :: "state => locals" Norm :: "state => xstate" translations "heap" => "fst" "locals" => "snd" "Norm s" == "(None,s)" constdefs new_Addr :: "aheap => loc × xcpt option" "new_Addr h == SOME (a,x). (h a = None ∧ x = None) | x = Some OutOfMemory" raise_if :: "bool => xcpt => xcpt option => xcpt option" "raise_if c x xo == if c ∧ (xo = None) then Some x else xo" np :: "val => xcpt option => xcpt option" "np v == raise_if (v = Null) NullPointer" c_hupd :: "aheap => xstate => xstate" "c_hupd h'== λ(xo,(h,l)). if xo = None then (None,(h',l)) else (xo,(h,l))" cast_ok :: "'c prog => cname => aheap => val => bool" "cast_ok G C h v == v = Null ∨ G\<turnstile>obj_ty (the (h (the_Addr v)))\<preceq> Class C" (* LEMMAS *) lemma obj_ty_def2 [simp]: "obj_ty (Obj C fs) = Class C" apply (unfold obj_ty_def) apply (simp (no_asm)) done lemma obj_ty_def3 [simp]: "obj_ty (Arr T len entries) = T.[]" by (unfold obj_ty_def) simp (* lemma new_AddrD: "(a,x) = new_Addr h ==> h a = None ∧ x = None | x = Some OutOfMemory" apply (unfold new_Addr_def) apply(simp add: Pair_fst_snd_eq Eps_split) apply(rule someI) apply(rule disjI2) apply(rule_tac "r" = "snd (?a,Some OutOfMemory)" in trans) apply auto done *) lemma raise_if_True [simp]: "raise_if True x y ≠ None" apply (unfold raise_if_def) apply auto done lemma raise_if_False [simp]: "raise_if False x y = y" apply (unfold raise_if_def) apply auto done lemma raise_if_Some [simp]: "raise_if c x (Some y) ≠ None" apply (unfold raise_if_def) apply auto done lemma raise_if_Some2 [simp]: "raise_if c z (if x = None then Some y else x) ≠ None" apply (unfold raise_if_def) apply(induct_tac "x") apply auto done lemma raise_if_SomeD [rule_format (no_asm)]: "raise_if c x y = Some z --> c ∧ Some z = Some x | y = Some z" apply (unfold raise_if_def) apply auto done lemma raise_if_NoneD [rule_format (no_asm)]: "raise_if c x y = None --> ¬ c ∧ y = None" apply (unfold raise_if_def) apply auto done lemma np_NoneD [rule_format (no_asm)]: "np a' x' = None --> x' = None ∧ a' ≠ Null" apply (unfold np_def raise_if_def) apply auto done lemma np_None [rule_format (no_asm), simp]: "a' ≠ Null --> np a' x' = x'" apply (unfold np_def raise_if_def) apply auto done lemma np_Some [simp]: "np a' (Some xc) = Some xc" apply (unfold np_def raise_if_def) apply auto done lemma np_Null [simp]: "np Null None = Some NullPointer" apply (unfold np_def raise_if_def) apply auto done lemma np_Addr [simp]: "np (Addr a) None = None" apply (unfold np_def raise_if_def) apply auto done lemma np_raise_if [simp]: "(np Null (raise_if c xc None)) = Some (if c then xc else NullPointer)" apply (unfold raise_if_def) apply (simp (no_asm)) done (* ADDED FROM COMFORM.thy *) syntax (xsymbols) conf :: "'c prog => aheap => val => ty => bool" ("_,_ \<turnstile> _ ::\<preceq> _" [51,51,51,51] 50) end
lemma obj_ty_def2:
obj_ty (Obj C fs) = Class C
lemma obj_ty_def3:
obj_ty (Arr T len entries) = T.[]
lemma raise_if_True:
raise_if True x y ≠ None
lemma raise_if_False:
raise_if False x y = y
lemma raise_if_Some:
raise_if c x (Some y) ≠ None
lemma raise_if_Some2:
raise_if c z (if x = None then Some y else x) ≠ None
lemma raise_if_SomeD:
raise_if c x y = Some z ==> c ∧ Some z = Some x ∨ y = Some z
lemma raise_if_NoneD:
raise_if c x y = None ==> ¬ c ∧ y = None
lemma np_NoneD:
np a' x' = None ==> x' = None ∧ a' ≠ Null
lemma np_None:
a' ≠ Null ==> np a' x' = x'
lemma np_Some:
np a' (Some xc) = Some xc
lemma np_Null:
np Null None = Some NullPointer
lemma np_Addr:
np (Addr a) None = None
lemma np_raise_if:
np Null (raise_if c xc None) = Some (if c then xc else NullPointer)